Skip to main content
Top
Published in: Cluster Computing 5/2019

14-11-2017

The power load’s signal analysis and short-term prediction based on wavelet decomposition

Authors: Huan Wang, Min Ouyang, Zhibing Wang, Ruishi Liang, Xin Zhou

Published in: Cluster Computing | Special Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The complex signal represented by power load is affected by many factors, so the signal components are very complicated. So that, it is difficult to obtain satisfactory prediction accuracy by using a single model for the complex signal. In this case, wavelet decomposition is used to decompose the power load into a series of sub signals. The low frequency sub signal is remarkably periodic, and the high frequency sub signals can prove to be chaotic signals. Then the signals of different characteristics are predicted by different models. For the low frequency sub signal, the support vector machine (SVM) is adopted. In SVM model, air temperature and week attributes are included in model inputs. Especially the week attribute is represented by a 3-bit binary encoding, which represents Monday to Sunday. For the chaotic high frequency sub signals, the chaotic local prediction (CLP) model is adopted. In CLP model, the embedding dimension and time delay are key parameters, which determines the prediction accuracy. In order to find the optimal parameters, a segmentation validation algorithm is proposed in this paper. The algorithm segments the known power load according to the time sequence. Then, based on the segmentation data, the optimal parameters are chosen based on the prediction accuracy. Compared with a single model, the prediction accuracy of the proposed algorithm is improved obviously, which proves the effectiveness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hu, D.G., Shu, H., Hu, H.D.: Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data. Cluster Comput. 20(1), 347–357 (2017). SICrossRef Hu, D.G., Shu, H., Hu, H.D.: Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data. Cluster Comput. 20(1), 347–357 (2017). SICrossRef
2.
go back to reference Zhang, G.W., Xu, L.Y., Xue, Y.L.: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data. Cluster Comput. 20(1), 789–803 (2017)CrossRef Zhang, G.W., Xu, L.Y., Xue, Y.L.: Model and forecast stock market behavior integrating investor sentiment analysis and transaction data. Cluster Comput. 20(1), 789–803 (2017)CrossRef
3.
go back to reference Hirata, Y., Aihara, K.: Improving time series prediction of solar irradiance after sunrise: comparison among three methods for time series prediction. Solar Energy 149, 294–301 (2017)CrossRef Hirata, Y., Aihara, K.: Improving time series prediction of solar irradiance after sunrise: comparison among three methods for time series prediction. Solar Energy 149, 294–301 (2017)CrossRef
4.
go back to reference Yang, G.L., Cao, S.Q., Wu, Y.: Recent advancements in signal processing and machine learning. Math. Probl. Eng. 2014 Article ID 549024 (2014) Yang, G.L., Cao, S.Q., Wu, Y.: Recent advancements in signal processing and machine learning. Math. Probl. Eng. 2014 Article ID 549024 (2014)
5.
go back to reference Moreau, F., Gibert, D., Holschneider, M., et al.: Identification of sources of potential fields with the continuous wavelet transform: basic theory. J. Geophys. Res. 104(B3), 5003–5013 (1999)CrossRef Moreau, F., Gibert, D., Holschneider, M., et al.: Identification of sources of potential fields with the continuous wavelet transform: basic theory. J. Geophys. Res. 104(B3), 5003–5013 (1999)CrossRef
6.
go back to reference Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, vol. 3. Elsevier, Amsterdam (2009)MATH Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, vol. 3. Elsevier, Amsterdam (2009)MATH
7.
go back to reference Kumari, G.S., Kumar, S.k.: Electrocardio graphic signal analysis using wavelet transforms. In: 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), pp. 1–6 (2015) Kumari, G.S., Kumar, S.k.: Electrocardio graphic signal analysis using wavelet transforms. In: 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), pp. 1–6 (2015)
8.
go back to reference Rosenstein, M.T., Collins, J.J., Luca, C.J.D.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65(1–2), 117–134 (1993)MathSciNetMATHCrossRef Rosenstein, M.T., Collins, J.J., Luca, C.J.D.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65(1–2), 117–134 (1993)MathSciNetMATHCrossRef
9.
go back to reference Yong, Z.: New prediction of chaotic time series based on local Lyapunov exponent. Chin. Phys. Lett. 22(5) Article ID 020503 (2013) Yong, Z.: New prediction of chaotic time series based on local Lyapunov exponent. Chin. Phys. Lett. 22(5) Article ID 020503 (2013)
10.
go back to reference Corts, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Corts, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
11.
go back to reference Petra, V., Anna, B.E., Viera, R., Slavomír, Š., et al.: Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 000, 1–16 (2017) Petra, V., Anna, B.E., Viera, R., Slavomír, Š., et al.: Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 000, 1–16 (2017)
12.
go back to reference Su, L.Y., Li, C.L.: Local prediction of chaotic time series based on polynomial coefficient autoregressive model. Math. Probl. Eng. 2015, Article ID 901807 Su, L.Y., Li, C.L.: Local prediction of chaotic time series based on polynomial coefficient autoregressive model. Math. Probl. Eng. 2015, Article ID 901807
13.
go back to reference Qu, J.L., Wang, X.F., Qiao, Y.C, et al.: An improved local weighted linear prediction model for chaotic time series. Chin. Phys. Lett. 31(2) Article ID 020503 (2014) Qu, J.L., Wang, X.F., Qiao, Y.C, et al.: An improved local weighted linear prediction model for chaotic time series. Chin. Phys. Lett. 31(2) Article ID 020503 (2014)
14.
go back to reference Frandes, M., Timar, B., Timar, R., Lungeanu, D.: Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Sci. Rep. 7 Article ID 6232 (2017) Frandes, M., Timar, B., Timar, R., Lungeanu, D.: Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Sci. Rep. 7 Article ID 6232 (2017)
15.
go back to reference Livi, L., Sadeghian, A.: Granular computing, computational intelligence, and the analysis of non-geometric input spaces. Granul. Comput. 1(1), 13–20 (2016)CrossRef Livi, L., Sadeghian, A.: Granular computing, computational intelligence, and the analysis of non-geometric input spaces. Granul. Comput. 1(1), 13–20 (2016)CrossRef
16.
go back to reference Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.: Multi-objective evolutionary design of granular rule-based classifiers. Granul. Comput. 1(1), 37–58 (2016)CrossRef Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.: Multi-objective evolutionary design of granular rule-based classifiers. Granul. Comput. 1(1), 37–58 (2016)CrossRef
17.
go back to reference Lingras, P., Haider, F., Triff, M.: Granular meta-clustering based on hierarchical, network, and temporal connections. Granul. Comput. 1(1), 71–92 (2016)CrossRef Lingras, P., Haider, F., Triff, M.: Granular meta-clustering based on hierarchical, network, and temporal connections. Granul. Comput. 1(1), 71–92 (2016)CrossRef
19.
go back to reference Dubois, D., Prade, H.: Bridging gaps between several forms of granular computing. Granul. Comput. 1(2), 115–126 (2016)CrossRef Dubois, D., Prade, H.: Bridging gaps between several forms of granular computing. Granul. Comput. 1(2), 115–126 (2016)CrossRef
20.
go back to reference Yao, Y.: A triarchic theory of granular computing. Granul. Comput. 1(2), 145–157 (2016)CrossRef Yao, Y.: A triarchic theory of granular computing. Granul. Comput. 1(2), 145–157 (2016)CrossRef
22.
go back to reference Mallat, S.: Multi-resolution approximations and wavelet orthogonal bases of l2(r). Trans. Am. Math. Soc. 315, 67–87 (1989) Mallat, S.: Multi-resolution approximations and wavelet orthogonal bases of l2(r). Trans. Am. Math. Soc. 315, 67–87 (1989)
23.
go back to reference Smola, A., Scholkopf, B.: A Tutorial on Support Vector Regression. Royal Holloway College, London (1998)MATH Smola, A., Scholkopf, B.: A Tutorial on Support Vector Regression. Royal Holloway College, London (1998)MATH
24.
go back to reference Zhang, H.R., Han, Z.Z.: An improved sequential minimal optimization learning algorithm for regression support vector machine. J. Softw. 12(3), 2006–2013 (2003)MathSciNetMATH Zhang, H.R., Han, Z.Z.: An improved sequential minimal optimization learning algorithm for regression support vector machine. J. Softw. 12(3), 2006–2013 (2003)MathSciNetMATH
25.
go back to reference Takens, F.: Detecting Strange Attractors in Fluid Turbulence. Springer, Berlin (1981)MATH Takens, F.: Detecting Strange Attractors in Fluid Turbulence. Springer, Berlin (1981)MATH
26.
go back to reference Gautama, T., Mandic, D.P., Van Hulle, M.M.: A differential entropy based method for determining the optimal embedding parameters of a signal. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China: IEEE, pp. 29–32 (2003) Gautama, T., Mandic, D.P., Van Hulle, M.M.: A differential entropy based method for determining the optimal embedding parameters of a signal. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China: IEEE, pp. 29–32 (2003)
27.
go back to reference Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Joint Conf. Artif. Intell. 14, 1137–1143 (1995) Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Int. Joint Conf. Artif. Intell. 14, 1137–1143 (1995)
Metadata
Title
The power load’s signal analysis and short-term prediction based on wavelet decomposition
Authors
Huan Wang
Min Ouyang
Zhibing Wang
Ruishi Liang
Xin Zhou
Publication date
14-11-2017
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 5/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1316-3

Other articles of this Special Issue 5/2019

Cluster Computing 5/2019 Go to the issue

Premium Partner