Skip to main content
Top

2020 | OriginalPaper | Chapter

14. The Resource Principle

Utilization and Intelligent Reprocessing Routes for Wood-Based Materials, Natural Fibers and Organic Residues

Authors : Bohumil Kasal, Prof., Moritz Leschinsky, Dr., Christian Oehr, Prof., Gerd Unkelbach, Markus Wolperdinger, Dr.

Published in: Biological Transformation

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Summary

From time immemorial wood has been used for a very wide range of applications on account of its mechanical properties. Its uses range from static applications in the construction industry and interior design, where for the most part load‐bearing structures are maintained, and extend all the way to energetic use—in other words, its complete degradation to water, minerals and carbon dioxide. There are numerous intermediate levels of physical and/or chemical treatment between these extremes.
In Sects. 14.2 to 14.5, applications are described where all statically significant structures are retained and combined with other materials such as glass fiber or even concrete to optimize mechanical properties. Here, chemical processing is limited to the bonding of wood components with each other or with other materials. These diverse combinations allow new mechanical properties to be achieved. If a hierarchical structure that results in an anisotropic distribution of mechanical properties is broken down, a near‐isotropic distribution profile, with respect to mechanical properties, can be achieved in composite materials.
If the focus is on the chemical components rather than the mechanical structure, then wood can be broken down and fractionated using a variety of methods. Nine of these processes are described and evaluated according to their respective technical maturity. To this end, it should be noted that there are different stages of development: from an established need for pure research through to industrial applications that have already been implemented. A distinction should be made between those processes which preserve the chemical structures—where lignin, hemicellulose and cellulose are regarded as fundamental structures worthy of preservation—to those which break down these structures. While many mature applications already exist for cellulose and hemicellulose, lignin, apart from a few applications, still requires a great deal of research in order for the synthetic efficiency of nature to be optimally exploited. When methods are used that degrade the above‐mentioned target structures further, the end products are small molecules, which can be introduced into the gas network to store energy as fuel (bioethanol) or as methane, or can serve as raw materials for other processes of the chemical industry. An essential criterion for all these processes is that no residues remain, but rather that residues from other processes can even be included in the cycle. It is of interest to the chemical industry that components can be discharged at the different stages of digestion, which can in turn be used for further production and replace fossil resources. Should further use no longer be meaningful after various product cycles, then thermal utilization is still possible and the resulting carbon dioxide can be reintroduced into the resource cycle by using catalysts and energy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashby M F (1999) Materials selection in mechanical design. 2. Edn. Butterworth Heinemann, Oxford Ashby M F (1999) Materials selection in mechanical design. 2. Edn. Butterworth Heinemann, Oxford
3.
go back to reference Bruck HA, Evans JJ, Peterson ML (2002) The role of mechanics in biological and biologically inspired materials. Experimental Mechanics 425(4):361–371 Bruck HA, Evans JJ, Peterson ML (2002) The role of mechanics in biological and biologically inspired materials. Experimental Mechanics 425(4):361–371
4.
go back to reference Carlquist S (2001) Comparative Wood Anatomy. Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. 2. Edn., Springer, Berlin Carlquist S (2001) Comparative Wood Anatomy. Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. 2. Edn., Springer, Berlin
6.
go back to reference Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. Journal of Integrative Plant Biology 9(2):131–143 Du S, Yamamoto F (2007) An overview of the biology of reaction wood formation. Journal of Integrative Plant Biology 9(2):131–143
8.
go back to reference Fratzl P (2007) Biomimetic materials research: what we can really learn from nature’s structural materials? J R Soc Interface 4:637–642 Fratzl P (2007) Biomimetic materials research: what we can really learn from nature’s structural materials? J R Soc Interface 4:637–642
11.
go back to reference Huang L, Yan B, Yan L, Xu Q, Tan H, Kasal B (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Composites Part B: Engineering 91:569–578 Huang L, Yan B, Yan L, Xu Q, Tan H, Kasal B (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Composites Part B: Engineering 91:569–578
12.
go back to reference Huang L, Zhang C, Yan L, Kasal B (2018) Flexural behavior of U-Shape FRP-profile-RC composite beams with inner GFRP tube confinement at concrete compression zone. Composite Structures 184:674–687 Huang L, Zhang C, Yan L, Kasal B (2018) Flexural behavior of U-Shape FRP-profile-RC composite beams with inner GFRP tube confinement at concrete compression zone. Composite Structures 184:674–687
14.
go back to reference Kasal B, Heiduschke A (2004) Radial reinforcement of glue laminated wood beams with composite materials. Forest Product Journal 54(1):74–79 Kasal B, Heiduschke A (2004) Radial reinforcement of glue laminated wood beams with composite materials. Forest Product Journal 54(1):74–79
15.
go back to reference Kasal B, Blass R (2012) Hybrid materials in wood structures – advantages and challenges. An example of reinforcement of a laminated arch. Holztechnologie 53(6):26–31 Kasal B, Blass R (2012) Hybrid materials in wood structures – advantages and challenges. An example of reinforcement of a laminated arch. Holztechnologie 53(6):26–31
16.
go back to reference Klar A, Marheinecke N, Wegener R (2009) Hierarchy of mathematical models for production processes of technical textiles. Z angew Math 89(12):941–961MathSciNetMATH Klar A, Marheinecke N, Wegener R (2009) Hierarchy of mathematical models for production processes of technical textiles. Z angew Math 89(12):941–961MathSciNetMATH
17.
go back to reference Lin H, Zeng X, Sherburn M, Longs AC, Clifford MJ (2011) Automated geometric modelling of textile structures. Textile Research Journal 82(16):1689–1702 Lin H, Zeng X, Sherburn M, Longs AC, Clifford MJ (2011) Automated geometric modelling of textile structures. Textile Research Journal 82(16):1689–1702
18.
go back to reference Lomov SV, Perie G, Ivanov DS, Verpoest I, Marsal D (2011) Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Textile Research Journal 8(1):28–41 Lomov SV, Perie G, Ivanov DS, Verpoest I, Marsal D (2011) Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Textile Research Journal 8(1):28–41
19.
go back to reference Masselter T, Haushahn T, Schwager H, Milwich M, Nathanson R, Gude M, Cichy F, Hufenbach W, Neinhuis C, Speck T (2010) Biomimetic fibre-reinforced composites inspired by branched plant stems. WIT Transactions on Ecology and the Environment 138, Design and Nature 411. https://doi.org/10.2495/DN100361CrossRef Masselter T, Haushahn T, Schwager H, Milwich M, Nathanson R, Gude M, Cichy F, Hufenbach W, Neinhuis C, Speck T (2010) Biomimetic fibre-reinforced composites inspired by branched plant stems. WIT Transactions on Ecology and the Environment 138, Design and Nature 411. https://​doi.​org/​10.​2495/​DN100361CrossRef
20.
go back to reference Niemz P, Sonderegger W (2017) Holzphysik. Physik des Holzes und der Holzwerkstoffe. Hanser Verlag, Leipzig Niemz P, Sonderegger W (2017) Holzphysik. Physik des Holzes und der Holzwerkstoffe. Hanser Verlag, Leipzig
21.
go back to reference Pan N, Hua T, Qiu Y (2001) Relationship between fiber and yarn strength. Textile Research Journal 71(11):960–954 Pan N, Hua T, Qiu Y (2001) Relationship between fiber and yarn strength. Textile Research Journal 71(11):960–954
22.
go back to reference Pickering KL, Aruan Efendy MG, Lea TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112 Pickering KL, Aruan Efendy MG, Lea TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112
23.
go back to reference Saavendra Flores EI, Friswel MI, Xia Y (2012) Variable stiffness biological and bio-inspired materials. Journal of Intelligent Material Systems and Structures 24(5):529–440 Saavendra Flores EI, Friswel MI, Xia Y (2012) Variable stiffness biological and bio-inspired materials. Journal of Intelligent Material Systems and Structures 24(5):529–440
24.
go back to reference Saavedra Flores EI, Murugan MS, Friswell MI, de Souza Neto EA (2011) Computational Multi-scale Constitutive Model for Wood Cell wall and its Application to the Design of Bio-inspired. In: Composites. Bioinspiration, Biomimetics, and Bioreplication. Proc. SPIE Vol. 7975 79750D. https://doi.org/10.1117/12.880397CrossRef Saavedra Flores EI, Murugan MS, Friswell MI, de Souza Neto EA (2011) Computational Multi-scale Constitutive Model for Wood Cell wall and its Application to the Design of Bio-inspired. In: Composites. Bioinspiration, Biomimetics, and Bioreplication. Proc. SPIE Vol. 7975 79750D. https://​doi.​org/​10.​1117/​12.​880397CrossRef
25.
go back to reference Shah DU (2014) Natural fibre composites: Comprehensive Ashby-type materials selection charts. Materials and Design 62:21–31 Shah DU (2014) Natural fibre composites: Comprehensive Ashby-type materials selection charts. Materials and Design 62:21–31
26.
go back to reference Shmulsky R, Jones D (2014) Forest Products and Wood Science: An Introduction. 6. Edn., Wiley-Blackwell Shmulsky R, Jones D (2014) Forest Products and Wood Science: An Introduction. 6. Edn., Wiley-Blackwell
27.
go back to reference Sliseris J, Yan L, Kasal B (2016) Numerical simulation and experimental verification of hollow and foam-filled flax FRP composite tubular energy absorbers under lateral crushing. Composites Part B: Engineering 89:143–154 Sliseris J, Yan L, Kasal B (2016) Numerical simulation and experimental verification of hollow and foam-filled flax FRP composite tubular energy absorbers under lateral crushing. Composites Part B: Engineering 89:143–154
29.
go back to reference Yan L, Wang B, Kasal B (2017) Can plant-based natural flax replace mineral-based basalt and synthetic E-glass for fibre reinforced polymer tubular energy absorbers? A comparative study on quasi-static axial crushing. Frontiers in Materials 4:42 Yan L, Wang B, Kasal B (2017) Can plant-based natural flax replace mineral-based basalt and synthetic E-glass for fibre reinforced polymer tubular energy absorbers? A comparative study on quasi-static axial crushing. Frontiers in Materials 4:42
30.
go back to reference Wagenführ A, Scholz F (2008) Taschenbuch der Holztechnik. Carl Hanser Verlag, Leipzig Wagenführ A, Scholz F (2008) Taschenbuch der Holztechnik. Carl Hanser Verlag, Leipzig
34.
go back to reference Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology 96:673–686 Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology 96:673–686
35.
go back to reference Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technology 96:2019–2025 Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technology 96:2019–2025
36.
go back to reference Carvalho GB, Mussatto SI, Cândido EJ, Almeida e Silva JB (2006) Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. Journal of Chemical Technology and Biotechnology 81(2):152–157 Carvalho GB, Mussatto SI, Cândido EJ, Almeida e Silva JB (2006) Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. Journal of Chemical Technology and Biotechnology 81(2):152–157
37.
go back to reference Ingram T et al (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource Technology 102:5221–5228 Ingram T et al (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part I: Conversion of rye straw to valuable products. Bioresource Technology 102:5221–5228
38.
go back to reference Da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) Cradle-to-grave assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology 20:339–347 Da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) Cradle-to-grave assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology 20:339–347
39.
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100:10–18 Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100:10–18
40.
go back to reference Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96:1959–1966 Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96:1959–1966
41.
go back to reference Kumar P, Barrett DM, Delwiche MJ, Stroeve P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind Eng Chem Res 48:3713–3729 Kumar P, Barrett DM, Delwiche MJ, Stroeve P. (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind Eng Chem Res 48:3713–3729
42.
go back to reference Garrote G, Dominguez H, Parajo JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz als Roh- und Werkstoff 59:53–59 Garrote G, Dominguez H, Parajo JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz als Roh- und Werkstoff 59:53–59
43.
go back to reference Root DF, Saeman JF, Harris JF, Neill WK (1959) Kinetics of the acid-catalyzed conversion of xylose to furfural. Forest Products Journal 1959:158–165 Root DF, Saeman JF, Harris JF, Neill WK (1959) Kinetics of the acid-catalyzed conversion of xylose to furfural. Forest Products Journal 1959:158–165
44.
go back to reference Kubikova J, Lu P, Zemann A, Krkoska P, Bobleter O (2000) Aquasolv pretreatment of plant materials for the production of cellulose and paper. Cellulose chemistry and technology 34:151–162 Kubikova J, Lu P, Zemann A, Krkoska P, Bobleter O (2000) Aquasolv pretreatment of plant materials for the production of cellulose and paper. Cellulose chemistry and technology 34:151–162
46.
go back to reference Sixta H (2003) Water prehydrolysis of beech wood. R&D Lenzing AG Sixta H (2003) Water prehydrolysis of beech wood. R&D Lenzing AG
47.
go back to reference Yu Q et al (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology 101:4895–4899 Yu Q et al (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology 101:4895–4899
48.
go back to reference Andritz. The Practicabilities of Converting to DP Technology. www.andritz.com‚ see pulp and paper section: pre-hydrolysis continuous cooking. Accessed: 08.06.2020 Andritz. The Practicabilities of Converting to DP Technology. www.​andritz.​com‚ see pulp and paper section: pre-hydrolysis continuous cooking. Accessed: 08.06.2020
49.
go back to reference Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnology and bioengineering 28:792–801 Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnology and bioengineering 28:792–801
50.
go back to reference Banerjee S et al (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy 33:1680–1686 Banerjee S et al (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass and Bioenergy 33:1680–1686
51.
go back to reference McGinnis GD, Wilson WW, Mullen CE (1983) Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind Eng Chem Prod Res Dev 22:352–357 McGinnis GD, Wilson WW, Mullen CE (1983) Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind Eng Chem Prod Res Dev 22:352–357
54.
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101:4851–4861 Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101:4851–4861
56.
go back to reference Sixta H (2006) Handbook of Pulp. Wiley-VCH, Weinheim Sixta H (2006) Handbook of Pulp. Wiley-VCH, Weinheim
57.
go back to reference Sixta H (2009) Acid Sulfite-based Biorefinery – Advances in Pulping Techniques. TKK, Aalto Sixta H (2009) Acid Sulfite-based Biorefinery – Advances in Pulping Techniques. TKK, Aalto
60.
go back to reference Fraunhofer CBP (2012) Prozesszentrum für die stoffliche Nutzung nachwachsender Rohstoffe Fraunhofer CBP (2012) Prozesszentrum für die stoffliche Nutzung nachwachsender Rohstoffe
64.
go back to reference Sixta H (2009) Carboxylic Acid-based Biorefinery – Advances in Pulping Techniques. TKK 2009, Aalto Sixta H (2009) Carboxylic Acid-based Biorefinery – Advances in Pulping Techniques. TKK 2009, Aalto
67.
go back to reference Fort DA et al (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9:63 Fort DA et al (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9:63
68.
go back to reference Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ Sci 4:3913–3929 Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ Sci 4:3913–3929
69.
go back to reference Hyvarinen S, Damlin P, Grasvik J, Murzin DY, Mikkola JP (2011) Ionic Liquid Fractionation of Woody Biomass for Fermentable Monosaccharides. Cell Chem Technol 45:483–486 Hyvarinen S, Damlin P, Grasvik J, Murzin DY, Mikkola JP (2011) Ionic Liquid Fractionation of Woody Biomass for Fermentable Monosaccharides. Cell Chem Technol 45:483–486
70.
go back to reference Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy 18:189–199 Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy 18:189–199
71.
go back to reference Chang VS, Nagwani M, Kim C-H, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol 94:1–28 Chang VS, Nagwani M, Kim C-H, Holtzapple MT (2001) Oxidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol 94:1–28
72.
go back to reference Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 101:4744–4753 Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 101:4744–4753
73.
go back to reference Schütt F, Saake B, Puls J (2010) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. In: Proceedings / 11th European Workshop on Lignocellulosics and Pulp : August 16–19, 2010 Hamburg / Germany. Hamburg: Johann Heinrich von Thünen-Institut ; Zentrum Holzwirtschaft, Univ Hamburg, pp 13–16 Schütt F, Saake B, Puls J (2010) Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. In: Proceedings / 11th European Workshop on Lignocellulosics and Pulp : August 16–19, 2010 Hamburg / Germany. Hamburg: Johann Heinrich von Thünen-Institut ; Zentrum Holzwirtschaft, Univ Hamburg, pp 13–16
80.
go back to reference World Economic Forum Report on the Future of Industrial Biorefineries (2010) World Economic Forum Report on the Future of Industrial Biorefineries (2010)
81.
go back to reference Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1 Bals B, Rogers C, Jin M, Balan V, Dale B (2010) Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnol Biofuels 3:1
83.
go back to reference Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 46:126–131 Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 46:126–131
86.
go back to reference Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41 Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41
87.
go back to reference Ewe T (2002) Baumstark: Flüssiges Holz. Bild der Wissenschaft 2:73–75 Ewe T (2002) Baumstark: Flüssiges Holz. Bild der Wissenschaft 2:73–75
88.
go back to reference Ash J, Wu CF, Creamer AW, Lora JH, Rawus JD, Joseph D, Shelton G, Senyo WC (1993) Lignin in wood composites. Patentschrift WO 9.321.260, 28.10.1993 Ash J, Wu CF, Creamer AW, Lora JH, Rawus JD, Joseph D, Shelton G, Senyo WC (1993) Lignin in wood composites. Patentschrift WO 9.321.260, 28.10.1993
89.
go back to reference Roffael E, Dix B (1991) Lignin and lignosulfonate in non-conventional bonding – an overview. Holz als Roh- und Werkstoff 49:199–205 Roffael E, Dix B (1991) Lignin and lignosulfonate in non-conventional bonding – an overview. Holz als Roh- und Werkstoff 49:199–205
90.
go back to reference Pecina H, Bernaczyk Z, Wienhaus O, Kühne G (1994) Lignin-Phenol-Bindemittel für die Holzwerkstoffherstellung. Holz als Roh- und Werkstoff 52:1–5 Pecina H, Bernaczyk Z, Wienhaus O, Kühne G (1994) Lignin-Phenol-Bindemittel für die Holzwerkstoffherstellung. Holz als Roh- und Werkstoff 52:1–5
91.
go back to reference Lora JH, Glasser WG (2002) Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment 10:39–48 Lora JH, Glasser WG (2002) Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment 10:39–48
92.
go back to reference Nordsröm Y, Sjöholm E, Brodin I, Drougge R, Gellerstedt G (2011) Lignin for carbon fibres. In: Proc. of Nordic Wood Biorefinery Conference 2011, Stockholm, p 156–160 Nordsröm Y, Sjöholm E, Brodin I, Drougge R, Gellerstedt G (2011) Lignin for carbon fibres. In: Proc. of Nordic Wood Biorefinery Conference 2011, Stockholm, p 156–160
93.
go back to reference Baker F (2011) Utilization of lignin for production of carbon fiber materials for structural and energy applications. In: Proc. of Nordic Wood Biorefinery Conference 2011, Stockholm Baker F (2011) Utilization of lignin for production of carbon fiber materials for structural and energy applications. In: Proc. of Nordic Wood Biorefinery Conference 2011, Stockholm
94.
go back to reference Hirth T, Unkelbach G, Zibek Staiger N, Leschinsky M (2012) Review: Stoffliche Nutzung von Lignin Teil 2. Holztechnologie 53(2):46–51 Hirth T, Unkelbach G, Zibek Staiger N, Leschinsky M (2012) Review: Stoffliche Nutzung von Lignin Teil 2. Holztechnologie 53(2):46–51
95.
go back to reference Pufky-Heinrich D, Unkelbach G (2014) Herstellung biobasierter umweltfreundlicher Klebstoffe Aromatische Molekülbausteine aus Lignin. Adhäsion 4:16–19 Pufky-Heinrich D, Unkelbach G (2014) Herstellung biobasierter umweltfreundlicher Klebstoffe Aromatische Molekülbausteine aus Lignin. Adhäsion 4:16–19
96.
go back to reference Schmiedl D, Endisch S, Pindel E, Rückert D, Reinhardt S, Unkelbach G, Schweppe R (2012) Base catalyzed degradation of lignin for the generation of oxy-aromatic compounds – possibilities and challenges. Erdöl Erdgas Kohle 128 (10):357–363 Schmiedl D, Endisch S, Pindel E, Rückert D, Reinhardt S, Unkelbach G, Schweppe R (2012) Base catalyzed degradation of lignin for the generation of oxy-aromatic compounds – possibilities and challenges. Erdöl Erdgas Kohle 128 (10):357–363
99.
go back to reference Basu P (2010) Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press Basu P (2010) Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press
104.
go back to reference Bolhàr-Nordenkampf M, Rauch R, Bosch K, Aichernig C, Hofbauer, H (2003) Biomass CHP plant Güssing-Using gasification for power generation. In: Kirtikara K (Ed) Proceedings 2nd RCETCE, Phuket, Thailand, p 567–572 Bolhàr-Nordenkampf M, Rauch R, Bosch K, Aichernig C, Hofbauer, H (2003) Biomass CHP plant Güssing-Using gasification for power generation. In: Kirtikara K (Ed) Proceedings 2nd RCETCE, Phuket, Thailand, p 567–572
111.
go back to reference Vineet Singh Sikarwar, Ming Zhao, Paul S. Fennell, Nilay Shah, Edward J. Anthony, Progress in biofuel production from gasification, Progress in Energy and Combustion Science, Volume 61, 2017, Page 194, ISSN 0360-1285 Vineet Singh Sikarwar, Ming Zhao, Paul S. Fennell, Nilay Shah, Edward J. Anthony, Progress in biofuel production from gasification, Progress in Energy and Combustion Science, Volume 61, 2017, Page 194, ISSN 0360-1285
112.
go back to reference Focus on Catalysts, Volume 2009, Issue 3, 2009, Page 5, ISSN 1351-4180 Focus on Catalysts, Volume 2009, Issue 3, 2009, Page 5, ISSN 1351-4180
113.
go back to reference Mudhoo A (Ed) (2012) Biogas Production: Pretreatment Methods in Anaerobic Digestion. Wiley, Hoboken Mudhoo A (Ed) (2012) Biogas Production: Pretreatment Methods in Anaerobic Digestion. Wiley, Hoboken
116.
go back to reference Obama P, Ricochon G, Muniglia L, Brosse N (2012) Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: Effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Bioresour Technol 112:156–163 Obama P, Ricochon G, Muniglia L, Brosse N (2012) Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: Effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Bioresour Technol 112:156–163
Metadata
Title
The Resource Principle
Authors
Bohumil Kasal, Prof.
Moritz Leschinsky, Dr.
Christian Oehr, Prof.
Gerd Unkelbach
Markus Wolperdinger, Dr.
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-59659-3_14

Premium Partners