Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

The Riemannian and Lorentzian Splitting Theorems

Author : José Luis Flores

Published in: Topics in Modern Differential Geometry

Publisher: Atlantis Press

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In these notes we are going to briefly review some of the main ideas involved in the formulation and proof of the Riemannian and Lorentzian Splitting Theorems. We will try to emphasize the similarities and differences appeared when passing from the Riemannian to the Lorentzian case, and the way in which these difficulties are overcome by the authors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Certain curvature quantity is nonzero at some point of each inextendible causal geodesic [3, Definition 12.7, Theorem 12.18].
 
Literature
1.
go back to reference R. Bartnik, Remarks on cosmological space-times and constant mean curvature surfaces. Comm Math. Phys. 117, 615–624 (1988) R. Bartnik, Remarks on cosmological space-times and constant mean curvature surfaces. Comm Math. Phys. 117, 615–624 (1988)
3.
go back to reference J.K. Beem, P.E. Ehrlich, K. Easley, Global Lorentzian Geometry (Marcel Dekker Inc., N.Y., 1996)MATH J.K. Beem, P.E. Ehrlich, K. Easley, Global Lorentzian Geometry (Marcel Dekker Inc., N.Y., 1996)MATH
4.
go back to reference J.K. Beem, P.E. Ehrlich, S. Markvorsen, G. Galloway, A Topogonov splitting theorem for Lorentzian manifolds. Springer Lect. Notes Math. 1156, 1–13 (1984)CrossRef J.K. Beem, P.E. Ehrlich, S. Markvorsen, G. Galloway, A Topogonov splitting theorem for Lorentzian manifolds. Springer Lect. Notes Math. 1156, 1–13 (1984)CrossRef
5.
go back to reference J.K. Beem, P.E. Ehrlich, S. Markvorsen, G. Galloway, Decomposition theorems for Lorentzian manifolds with nonpositive curvature. J. Diff. Geom. 22, 29–42 (1985)MathSciNetMATH J.K. Beem, P.E. Ehrlich, S. Markvorsen, G. Galloway, Decomposition theorems for Lorentzian manifolds with nonpositive curvature. J. Diff. Geom. 22, 29–42 (1985)MathSciNetMATH
6.
go back to reference E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Kuke Math. 25, 45–56 (1957)MathSciNetMATH E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Kuke Math. 25, 45–56 (1957)MathSciNetMATH
7.
go back to reference J. Cheeger, D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6, 119–128 (1971)MathSciNetMATH J. Cheeger, D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom. 6, 119–128 (1971)MathSciNetMATH
9.
go back to reference S. Cohn-Vossen, Totalkrümmung und geodätische Linien auf einfach zusammenhängenden, offenen, vollständigen Flächenstücken. Math. Sb. 43, 139–163 (1936)MATH S. Cohn-Vossen, Totalkrümmung und geodätische Linien auf einfach zusammenhängenden, offenen, vollständigen Flächenstücken. Math. Sb. 43, 139–163 (1936)MATH
10.
go back to reference J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition. J. Diff. Geom. 27, 477–491 (1988)MathSciNetMATH J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition. J. Diff. Geom. 27, 477–491 (1988)MathSciNetMATH
12.
go back to reference J. Eschenburg, E. Heintze, An elementary proof of the Cheeger–Gromoll splitting theorem. Ann. Glob. Anal. Geom. 2, 141–151 (1984)MathSciNetCrossRefMATH J. Eschenburg, E. Heintze, An elementary proof of the Cheeger–Gromoll splitting theorem. Ann. Glob. Anal. Geom. 2, 141–151 (1984)MathSciNetCrossRefMATH
14.
go back to reference G. Galloway, The Lorentzian splitting theorem without completeness assumption. J. Diff. Geom. 29, 373–387 (1989)MathSciNetMATH G. Galloway, The Lorentzian splitting theorem without completeness assumption. J. Diff. Geom. 29, 373–387 (1989)MathSciNetMATH
15.
go back to reference G. Galloway, Some rigidity results for spatially closer spacetimes, in Mathematics of Gravitation 1, ed. P. Chrusciel, Banach Center Publications, 41, Warsaw: Polish Acad. of Sci (1997) G. Galloway, Some rigidity results for spatially closer spacetimes, in Mathematics of Gravitation 1, ed. P. Chrusciel, Banach Center Publications, 41, Warsaw: Polish Acad. of Sci (1997)
19.
go back to reference E. Hopf, Elementare Benerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typ. Sitzungsber. Preuss. Ak. d. Wiss. 19, 147–152 (1927) E. Hopf, Elementare Benerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typ. Sitzungsber. Preuss. Ak. d. Wiss. 19, 147–152 (1927)
20.
go back to reference R.P.A.C. Newman, A proof of the splitting conjecture of S.-T. Yau. J. Diff. Geom. 31, 163–184 (1990) R.P.A.C. Newman, A proof of the splitting conjecture of S.-T. Yau. J. Diff. Geom. 31, 163–184 (1990)
21.
go back to reference B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, New York, 1983) B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, New York, 1983)
22.
go back to reference M. Sharifzadeh, Y. Bahrampour, Some results about the level sets of Lorentzian Busemann function and Bartniks conjecture. Commun. Math. Phys. 286, 389–398 (2009)MathSciNetCrossRefMATH M. Sharifzadeh, Y. Bahrampour, Some results about the level sets of Lorentzian Busemann function and Bartniks conjecture. Commun. Math. Phys. 286, 389–398 (2009)MathSciNetCrossRefMATH
23.
go back to reference V.A. Topogonov, Riemannian spaces which contain straight lines. Am. Math. Soc. Transl. 37, 287–290 (1964)CrossRef V.A. Topogonov, Riemannian spaces which contain straight lines. Am. Math. Soc. Transl. 37, 287–290 (1964)CrossRef
24.
Metadata
Title
The Riemannian and Lorentzian Splitting Theorems
Author
José Luis Flores
Copyright Year
2017
Publisher
Atlantis Press
DOI
https://doi.org/10.2991/978-94-6239-240-3_1

Premium Partner