Skip to main content
Top

2021 | OriginalPaper | Chapter

12. The Route of Lignin Biodegradation for Its Valorization

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using lignin to produce high-value-added aromatic fine chemicals and high-grade biofuels such as aromatics, cycloalkanes, and alkanes can reduce the dependence on fossil resources and highly improve the competitiveness of biorefining industry. The biological valorization of lignin includes the biological depolymerization and bioconversion of lignin. With the development of bioprospecting and systems biology technology, more and more lignin-degrading microorganisms have been discovered and separated from the natural habitat of lignin decomposition. The physiological and biochemical characteristics of microorganisms and the molecular- and systematic-level degradation mechanism on lignin and lignin-derived aromatic compounds have also been deeply recognized. All of these have laid a theoretical foundation for precisely controlling the depolymerization and metabolism of lignin and establishing the biological processing pathway of lignin. This chapter will introduce the research progress of lignin valorization from the aspects of lignin-degrading microorganisms and enzymes, lignin degradation metabolic pathways, and the application of biosynthesis in lignin conversion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ademakinwa, A. N., & Agboola, F. K. (2016). Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. Journal of Genetic Engineering & Biotechnology, 14(1), 143–151.CrossRef Ademakinwa, A. N., & Agboola, F. K. (2016). Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. Journal of Genetic Engineering & Biotechnology, 14(1), 143–151.CrossRef
2.
go back to reference Ai, M. Q., Wang, F. F., Zhang, Y. Z., et al. (2014). Purification of pyranose oxidase from the white rot fungus Irpex lacteus and its cooperation with laccase in lignin degradation. Process Biochemistry, 49(12), 2191–2198.CrossRef Ai, M. Q., Wang, F. F., Zhang, Y. Z., et al. (2014). Purification of pyranose oxidase from the white rot fungus Irpex lacteus and its cooperation with laccase in lignin degradation. Process Biochemistry, 49(12), 2191–2198.CrossRef
3.
go back to reference Anita, S., Aggarwal Neeraj, K., Sharma, A., et al. (2015). Actinomycetes: A source of lignocellulolytic enzymes. Enzyme Research, 2015, 1–15.CrossRef Anita, S., Aggarwal Neeraj, K., Sharma, A., et al. (2015). Actinomycetes: A source of lignocellulolytic enzymes. Enzyme Research, 2015, 1–15.CrossRef
4.
go back to reference Arias, M. E., Blanquez, A., Hernandez, M., et al. (2016). Role of a thermostable laccase produced by Streptomyces ipomoeae in the degradation of wheat straw lignin in solid state fermentation. Journal of Analytical & Applied Pyrolysis, 122, 202–208.CrossRef Arias, M. E., Blanquez, A., Hernandez, M., et al. (2016). Role of a thermostable laccase produced by Streptomyces ipomoeae in the degradation of wheat straw lignin in solid state fermentation. Journal of Analytical & Applied Pyrolysis, 122, 202–208.CrossRef
5.
go back to reference Augustin, C. M., Parvu, M., Damian, G., et al. (2012). A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochemistry, 47(6), 968–975.CrossRef Augustin, C. M., Parvu, M., Damian, G., et al. (2012). A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochemistry, 47(6), 968–975.CrossRef
6.
go back to reference Barry, K. P., & Taylor, E. A. (2013). Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry, 52(38), 6724–6736.CrossRef Barry, K. P., & Taylor, E. A. (2013). Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry, 52(38), 6724–6736.CrossRef
7.
go back to reference Blanusa, M., Schenk, A., Sadeghi, H., et al. (2010). Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Analytical Biochemistry, 406(2), 141–146.CrossRef Blanusa, M., Schenk, A., Sadeghi, H., et al. (2010). Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Analytical Biochemistry, 406(2), 141–146.CrossRef
8.
go back to reference Bugg, T. D., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.CrossRef Bugg, T. D., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.CrossRef
9.
go back to reference Bugg, T. D. H., Ahmad, M., Hardiman, E. M., et al. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1890.CrossRef Bugg, T. D. H., Ahmad, M., Hardiman, E. M., et al. (2011). Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 28(12), 1883–1890.CrossRef
10.
go back to reference Camarero, S., Sarkar, S., Ruiz-Duenas, F. J., et al. (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 274(15), 10324–10330.CrossRef Camarero, S., Sarkar, S., Ruiz-Duenas, F. J., et al. (1999). Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 274(15), 10324–10330.CrossRef
11.
go back to reference Carabajal, M., Kellner, H., Levin, L., et al. (2013). The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase. Journal of Biotechnology, 168(1), 15–23.CrossRef Carabajal, M., Kellner, H., Levin, L., et al. (2013). The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase. Journal of Biotechnology, 168(1), 15–23.CrossRef
12.
go back to reference Castro, A. I. R. P., Evtuguin, D. V., & Xavier, A. M. B. (2003). Degradation of biphenyl lignin model compounds by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole and heteropolyanion [SiW11VO40]5−. Journal of Molecular Catalysis B: Enzymatic, 22(1–2), 13–20.CrossRef Castro, A. I. R. P., Evtuguin, D. V., & Xavier, A. M. B. (2003). Degradation of biphenyl lignin model compounds by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole and heteropolyanion [SiW11VO40]5−. Journal of Molecular Catalysis B: Enzymatic, 22(1–2), 13–20.CrossRef
13.
go back to reference Chaurasia, P. K., Yadav, R. S. S., & Yadava, S. (2014). Purification and characterization of yellow laccase from Trametes hirsuta MTCC-1171 and its application in synthesis of aromatic aldehydes. Process Biochemistry, 49(10), 1647–1655.CrossRef Chaurasia, P. K., Yadav, R. S. S., & Yadava, S. (2014). Purification and characterization of yellow laccase from Trametes hirsuta MTCC-1171 and its application in synthesis of aromatic aldehydes. Process Biochemistry, 49(10), 1647–1655.CrossRef
14.
go back to reference Chen, Y., Liyuan, C., Chongjian, T., et al. (2012). Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technology, 123, 682–685.CrossRef Chen, Y., Liyuan, C., Chongjian, T., et al. (2012). Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technology, 123, 682–685.CrossRef
15.
go back to reference Chen, Z., Sun, X., Li, Y., et al. (2017). Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metabolic Engineering, 39, 102–109.CrossRef Chen, Z., Sun, X., Li, Y., et al. (2017). Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metabolic Engineering, 39, 102–109.CrossRef
16.
go back to reference Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable & Sustainable Energy Reviews, 73, 610–621.CrossRef Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable & Sustainable Energy Reviews, 73, 610–621.CrossRef
17.
go back to reference Chi, Y., Wu, S., & Yu, C. (2019). Regulation of Mn2+on three manganese peroxidase genes Lg-mnp1, 2, and 3 at transcriptional level. Journal of Jilin Agricultural University, 41(5), 540–552. Chi, Y., Wu, S., & Yu, C. (2019). Regulation of Mn2+on three manganese peroxidase genes Lg-mnp1, 2, and 3 at transcriptional level. Journal of Jilin Agricultural University, 41(5), 540–552.
18.
go back to reference Chong, G. G., Huang, X. J., Di, J. H., et al. (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess & Biosystems Engineering, 41(4), 501–510.CrossRef Chong, G. G., Huang, X. J., Di, J. H., et al. (2018). Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess & Biosystems Engineering, 41(4), 501–510.CrossRef
19.
go back to reference Coconi-Linares, N., Magaña-Ortíz, D., Guzmán-Ortiz, D. A., et al. (2014). High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Applied Microbiology & Biotechnology, 98(22), 9519–9519.CrossRef Coconi-Linares, N., Magaña-Ortíz, D., Guzmán-Ortiz, D. A., et al. (2014). High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Applied Microbiology & Biotechnology, 98(22), 9519–9519.CrossRef
20.
go back to reference Colpa, D. I., Fraaije, M. W., & Bloois, E. (2014). DyP-type peroxidases: A promising and versatile class of enzymes. Journal of Industrial Microbiology & Biotechnology, 41(1), 1–7.CrossRef Colpa, D. I., Fraaije, M. W., & Bloois, E. (2014). DyP-type peroxidases: A promising and versatile class of enzymes. Journal of Industrial Microbiology & Biotechnology, 41(1), 1–7.CrossRef
21.
go back to reference Crowford, D. L. (1983). Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Applied & Environmental Microbiology, 45(3), 898–904.CrossRef Crowford, D. L. (1983). Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Applied & Environmental Microbiology, 45(3), 898–904.CrossRef
22.
go back to reference Cui, F., & Dolphin, D. (1992). Iron porphyrin catalyzed oxidation of lignin model compounds: The oxidation of veratryl alcohol and veratryl acetate. Canadian Journal of Chemistry, 70(8), 2314–2318.CrossRef Cui, F., & Dolphin, D. (1992). Iron porphyrin catalyzed oxidation of lignin model compounds: The oxidation of veratryl alcohol and veratryl acetate. Canadian Journal of Chemistry, 70(8), 2314–2318.CrossRef
23.
go back to reference Daniel, G., Volc, J., & Kubatova, E. (1994). Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Applied and Environmental Microbiology, 60(7), 2524–2532.CrossRef Daniel, G., Volc, J., & Kubatova, E. (1994). Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Applied and Environmental Microbiology, 60(7), 2524–2532.CrossRef
24.
go back to reference Daou, M., & Faulds, C. B. (2017). Glyoxal oxidases: Their nature and properties. World Journal of Microbiology and Biotechnology, 33(5), 87–97.CrossRef Daou, M., & Faulds, C. B. (2017). Glyoxal oxidases: Their nature and properties. World Journal of Microbiology and Biotechnology, 33(5), 87–97.CrossRef
25.
go back to reference de Oliveira, P. L., Duarte, M. C. T., Ponezi, A. N., et al. (2009). Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol, 40, 818–826.CrossRef de Oliveira, P. L., Duarte, M. C. T., Ponezi, A. N., et al. (2009). Purification and partial characterization of manganese peroxidase from Bacillus pumilus and Paenibacillus sp. Braz J Microbiol, 40, 818–826.CrossRef
26.
go back to reference Duan, J., Huo, X., Du, W. J., et al. (2016). Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp WJDL-Y2. Letters in Applied Microbiology, 62(1), 55–62.CrossRef Duan, J., Huo, X., Du, W. J., et al. (2016). Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp WJDL-Y2. Letters in Applied Microbiology, 62(1), 55–62.CrossRef
27.
go back to reference Duan, J., Liang, J. D., Du, W. J., et al. (2014). Biodegradation of Kraft lignin by a bacterial strain Sphingobacterium sp. HY-H. Advanced Materials Research, 955–959, 548–553.CrossRef Duan, J., Liang, J. D., Du, W. J., et al. (2014). Biodegradation of Kraft lignin by a bacterial strain Sphingobacterium sp. HY-H. Advanced Materials Research, 955–959, 548–553.CrossRef
28.
go back to reference Duan, Z., Rui, S., Liu, B., et al. (2018). Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express, 8(1), 119–134.CrossRef Duan, Z., Rui, S., Liu, B., et al. (2018). Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express, 8(1), 119–134.CrossRef
29.
go back to reference Elsalam, H. E. A., & Bahobail, A. S. (2016). Lignin biodegradation by thermophilic bacterial isolates from Saudi Arabia. Biological Chemistry Science, 7, 1413–1424. Elsalam, H. E. A., & Bahobail, A. S. (2016). Lignin biodegradation by thermophilic bacterial isolates from Saudi Arabia. Biological Chemistry Science, 7, 1413–1424.
30.
go back to reference Eriksson, K. E., Pettersson, B., Volc, J., et al. (1986). Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Applied Microbiology & Biotechnology, 23(3–4), 257–262. Eriksson, K. E., Pettersson, B., Volc, J., et al. (1986). Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Applied Microbiology & Biotechnology, 23(3–4), 257–262.
31.
go back to reference Fan, Y., Zhang, Z., Wang, F., et al. (2019). Lignin degradation in corn stover catalyzed by lignin peroxidase from Aspergillus oryzae broth: Effects of conditions on the kinetics. Renewable Energy, 130, 32–40.CrossRef Fan, Y., Zhang, Z., Wang, F., et al. (2019). Lignin degradation in corn stover catalyzed by lignin peroxidase from Aspergillus oryzae broth: Effects of conditions on the kinetics. Renewable Energy, 130, 32–40.CrossRef
32.
go back to reference Faraco, V., Alessandra, P., Giovanni, S., et al. (2007). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World Journal of Microbiology & Biotechnology, 23(6), 889–893.CrossRef Faraco, V., Alessandra, P., Giovanni, S., et al. (2007). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World Journal of Microbiology & Biotechnology, 23(6), 889–893.CrossRef
33.
go back to reference Feng, H., Jing, F., Lu, X., et al. (2001). Synergistic effects of cellobiose dehydrogenase and manganese-dependent peroxidases during lignin degradation. Chinese Science Bulletin, 46(23), 1956–1962.CrossRef Feng, H., Jing, F., Lu, X., et al. (2001). Synergistic effects of cellobiose dehydrogenase and manganese-dependent peroxidases during lignin degradation. Chinese Science Bulletin, 46(23), 1956–1962.CrossRef
34.
go back to reference Feng, H., Sun, Y., Zhi, Y., et al. (2015). Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional & Integrative Genomics, 15(2), 163–173.CrossRef Feng, H., Sun, Y., Zhi, Y., et al. (2015). Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional & Integrative Genomics, 15(2), 163–173.CrossRef
35.
go back to reference Fernández, I. S., Ruíz-Dueñas, F. J., Santillana, et al. (2009). Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallographica, 65(11), 1196–1205. Fernández, I. S., Ruíz-Dueñas, F. J., Santillana, et al. (2009). Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallographica, 65(11), 1196–1205.
36.
go back to reference Ferri, S., Kojima, K., & Sode, K. (2011). Review of glucose oxidases and glucose dehydrogenases: A bird's eye view of glucose sensing enzymes. Journal of Diabetes Science and Technology, 5(5), 1068–1076.CrossRef Ferri, S., Kojima, K., & Sode, K. (2011). Review of glucose oxidases and glucose dehydrogenases: A bird's eye view of glucose sensing enzymes. Journal of Diabetes Science and Technology, 5(5), 1068–1076.CrossRef
37.
go back to reference Fleige, C., Hansen, G., Kroll, J., et al. (2013). Investigation of the Amycolatopsis sp. Strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Applied and Environmental Microbiology, 79(1), 81–90.CrossRef Fleige, C., Hansen, G., Kroll, J., et al. (2013). Investigation of the Amycolatopsis sp. Strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Applied and Environmental Microbiology, 79(1), 81–90.CrossRef
38.
go back to reference Francisco, J. R.-D., & ángel, T. M. (2009). Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2(2), 164–177.CrossRef Francisco, J. R.-D., & ángel, T. M. (2009). Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2(2), 164–177.CrossRef
39.
go back to reference Gall, D. L., Ralph, J., Donohue, T. J., et al. (2017). Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology, 45, 120–126.CrossRef Gall, D. L., Ralph, J., Donohue, T. J., et al. (2017). Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology, 45, 120–126.CrossRef
40.
go back to reference Garcia-Ruiz, E., Mate, D., Gonzalez-Perez, D., et al. (2014). Directed evolution of ligninolytic oxidoreductases: From functional expression to stabilization and beyond. In S. Riva & W. D. Fessner (Eds.), Cascade biocatalysis: Integrating stereoselective and environmentally friendly reactions (pp. 1–22). Weinheim: Wiley. Garcia-Ruiz, E., Mate, D., Gonzalez-Perez, D., et al. (2014). Directed evolution of ligninolytic oxidoreductases: From functional expression to stabilization and beyond. In S. Riva & W. D. Fessner (Eds.), Cascade biocatalysis: Integrating stereoselective and environmentally friendly reactions (pp. 1–22). Weinheim: Wiley.
41.
go back to reference Garcia, B., Olivera, E. R., Minambres, B., et al. (1999). Novel biodegradable aromatic plastics from a bacterial source: genetic and biochemical studies on a route of the phenylacetyl-coa catabolon. Journal of Biological Chemistry, 274(41), 29228–29241.CrossRef Garcia, B., Olivera, E. R., Minambres, B., et al. (1999). Novel biodegradable aromatic plastics from a bacterial source: genetic and biochemical studies on a route of the phenylacetyl-coa catabolon. Journal of Biological Chemistry, 274(41), 29228–29241.CrossRef
42.
go back to reference Glenn, J. K., & Gold, M. H. (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 242, 329–341.CrossRef Glenn, J. K., & Gold, M. H. (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 242, 329–341.CrossRef
43.
go back to reference Godden, B., Ball, A. S., Helvensteian, P., et al. (1992). Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 138, 2441–2448.CrossRef Godden, B., Ball, A. S., Helvensteian, P., et al. (1992). Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology, 138, 2441–2448.CrossRef
44.
go back to reference Grzegorz, J., Anna, P., Justyna, S., et al. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. Fems Microbiology Reviews, 41(6), 1–22. Grzegorz, J., Anna, P., Justyna, S., et al. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. Fems Microbiology Reviews, 41(6), 1–22.
45.
go back to reference Hakala, T. K., Kristiina, H., Pekka, M., et al. (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Applied Microbiology & Biotechnology, 73(4), 839–849.CrossRef Hakala, T. K., Kristiina, H., Pekka, M., et al. (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Applied Microbiology & Biotechnology, 73(4), 839–849.CrossRef
46.
go back to reference Hernández-Ortega, A., Ferreira, P., & Martínez, A. T. (2012). Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Applied Microbiology & Biotechnology, 93(4), 1395–1410.CrossRef Hernández-Ortega, A., Ferreira, P., & Martínez, A. T. (2012). Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Applied Microbiology & Biotechnology, 93(4), 1395–1410.CrossRef
47.
go back to reference Higuchi, T. (2004). Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 80(5), 204–214.CrossRef Higuchi, T. (2004). Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 80(5), 204–214.CrossRef
48.
go back to reference Hofrichter, M., & René, U. (2006). Heme-thiolate haloperoxidases: Versatile biocatalysts with biotechnological and environmental significance. Applied Microbiology and Biotechnology, 71(3), 276–288.CrossRef Hofrichter, M., & René, U. (2006). Heme-thiolate haloperoxidases: Versatile biocatalysts with biotechnological and environmental significance. Applied Microbiology and Biotechnology, 71(3), 276–288.CrossRef
49.
go back to reference Hofrichter, M., Ullrich, R., Pecyna, M. J., et al. (2010). New and classic families of secreted fungal heme peroxidases. Applied Microbiology & Biotechnology, 87(3), 871–897.CrossRef Hofrichter, M., Ullrich, R., Pecyna, M. J., et al. (2010). New and classic families of secreted fungal heme peroxidases. Applied Microbiology & Biotechnology, 87(3), 871–897.CrossRef
50.
go back to reference Ike, P. T. L., Moreira, A. C., Almeida, d., et al. (2015). Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. SpringerPlus, 4(1), 654.CrossRef Ike, P. T. L., Moreira, A. C., Almeida, d., et al. (2015). Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. SpringerPlus, 4(1), 654.CrossRef
51.
go back to reference Jansen, F., Gillessen, B., Mueller, F., et al. (2014). Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway. Applied Biochemistry and Biotechnology, 61, 646–654.CrossRef Jansen, F., Gillessen, B., Mueller, F., et al. (2014). Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway. Applied Biochemistry and Biotechnology, 61, 646–654.CrossRef
52.
go back to reference Janusz, G., Pawlik, A., Sulej, J., et al. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941–962.CrossRef Janusz, G., Pawlik, A., Sulej, J., et al. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews, 41(6), 941–962.CrossRef
53.
go back to reference Jennifer, A., Philana, V. S. W., Sokolowsky, S., et al. (2016). Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli. New Biotechnology, 33, S26–S27.CrossRef Jennifer, A., Philana, V. S. W., Sokolowsky, S., et al. (2016). Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli. New Biotechnology, 33, S26–S27.CrossRef
54.
go back to reference Johjima, T., Ohkuma, M., & Kudo, T. (2003). Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Applied Microbiology and Biotechnology, 61(3), 220–225.CrossRef Johjima, T., Ohkuma, M., & Kudo, T. (2003). Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Applied Microbiology and Biotechnology, 61(3), 220–225.CrossRef
55.
go back to reference Johnson, C. W., & Beckham, G. T. (2015). Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metabolic Engineering, 28, 240–247.CrossRef Johnson, C. W., & Beckham, G. T. (2015). Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metabolic Engineering, 28, 240–247.CrossRef
56.
go back to reference Judith, B., Kuhl, M., Kohlstedt, M., et al. (2018). Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microbial Cell Factories, 17(1), 115.CrossRef Judith, B., Kuhl, M., Kohlstedt, M., et al. (2018). Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microbial Cell Factories, 17(1), 115.CrossRef
57.
go back to reference Kamaya, Y., Nakatsubo, F., Higuchi, T., et al. (1981). Degradation of d,l-syringaresinol, a β-β′ linked lignin model compound, by Fusarium solani M-13-1. Archives of Microbiology, 129(4), 305–309.CrossRef Kamaya, Y., Nakatsubo, F., Higuchi, T., et al. (1981). Degradation of d,l-syringaresinol, a β-β′ linked lignin model compound, by Fusarium solani M-13-1. Archives of Microbiology, 129(4), 305–309.CrossRef
58.
go back to reference Kamoda, S., & Saburi, Y. (1993). Cloning, expression, and sequence analysis of a lignostilbene- α,β -dioxygenase gene from Pseudomonas paucimobilis TMY1009. Journal of the Agricultural Chemical Society of Japan, 57(6), 926–930. Kamoda, S., & Saburi, Y. (1993). Cloning, expression, and sequence analysis of a lignostilbene- α,β -dioxygenase gene from Pseudomonas paucimobilis TMY1009. Journal of the Agricultural Chemical Society of Japan, 57(6), 926–930.
59.
go back to reference Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 87(8), 2936–2940.CrossRef Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 87(8), 2936–2940.CrossRef
60.
go back to reference Khare, S., & Prakash, O. (2017). Current developments in biotechnology and bioengineering: Production, isolation and purification of industrial products. Journal of Cleaner Production, 158, 380–381.CrossRef Khare, S., & Prakash, O. (2017). Current developments in biotechnology and bioengineering: Production, isolation and purification of industrial products. Journal of Cleaner Production, 158, 380–381.CrossRef
61.
go back to reference Khatami, S., Deng, Y., Tien, M., et al. (2019). Formation of water-soluble organic matter through fungal degradation of lignin. Organic Geochemistry, 135, 64–70.CrossRef Khatami, S., Deng, Y., Tien, M., et al. (2019). Formation of water-soluble organic matter through fungal degradation of lignin. Organic Geochemistry, 135, 64–70.CrossRef
62.
go back to reference Kim, S. J., & Shoda, M. (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum Dec1 involved in decolorization of dyes. Applied and Environmental Microbiology, 65(3), 1029–1035.CrossRef Kim, S. J., & Shoda, M. (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum Dec1 involved in decolorization of dyes. Applied and Environmental Microbiology, 65(3), 1029–1035.CrossRef
63.
go back to reference Koker, T. H. D., Mozuch, M. D., Cullen, D., et al. (2004). Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Applied & Environmental Microbiology, 70(10), 5794–5800.CrossRef Koker, T. H. D., Mozuch, M. D., Cullen, D., et al. (2004). Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Applied & Environmental Microbiology, 70(10), 5794–5800.CrossRef
64.
go back to reference Kong, W., Fu, X., Wang, L., et al. (2017). A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 10(1), 218.CrossRef Kong, W., Fu, X., Wang, L., et al. (2017). A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnology for Biofuels, 10(1), 218.CrossRef
65.
go back to reference Kour, D., Rana, K. L., Yadav, N., et al. (2019). Agriculturally and industrially important fungi: Current developments and potential biotechnological applications. In A. N. Yadav, S. Singh, S. Mishra, & A. Gupta (Eds.), Recent advancement in white biotechnology through fungi: Volume 2: Perspective for value-added products and environments (pp. 1–64). Cham: Springer. Kour, D., Rana, K. L., Yadav, N., et al. (2019). Agriculturally and industrially important fungi: Current developments and potential biotechnological applications. In A. N. Yadav, S. Singh, S. Mishra, & A. Gupta (Eds.), Recent advancement in white biotechnology through fungi: Volume 2: Perspective for value-added products and environments (pp. 1–64). Cham: Springer.
66.
go back to reference Kujawa, M., Ebner, H., Leitner, C., et al. (2006). Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase. Journal of Biological Chemistry, 281(46), 35104–35115.CrossRef Kujawa, M., Ebner, H., Leitner, C., et al. (2006). Structural basis for substrate binding and regioselective oxidation of monosaccharides at C3 by pyranose 2-oxidase. Journal of Biological Chemistry, 281(46), 35104–35115.CrossRef
67.
go back to reference Kukolya, J., Dobolyi, C., & Hornok, L. (1997). Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopathologica et Entomologica Hungarica, 32(1–2), 97–107. Kukolya, J., Dobolyi, C., & Hornok, L. (1997). Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopathologica et Entomologica Hungarica, 32(1–2), 97–107.
68.
go back to reference Kumar, V. V., & Rapheal, V. S. (2011). Induction and purification by three-phase partitioning of aryl alcohol oxidase (AAO) from Pleurotus ostreatus. Applied Biochemistry and Biotechnology, 163(3), 423–432.CrossRef Kumar, V. V., & Rapheal, V. S. (2011). Induction and purification by three-phase partitioning of aryl alcohol oxidase (AAO) from Pleurotus ostreatus. Applied Biochemistry and Biotechnology, 163(3), 423–432.CrossRef
69.
go back to reference Kupryashina, M. A., Selivanov, N. Y., & Nikitina, V. E. (2012). Isolation and purification of Mn-peroxidase from Azospirillum brasilense SP245. Applied Biochemistry and Microbiology, 48(1), 17–20.CrossRef Kupryashina, M. A., Selivanov, N. Y., & Nikitina, V. E. (2012). Isolation and purification of Mn-peroxidase from Azospirillum brasilense SP245. Applied Biochemistry and Microbiology, 48(1), 17–20.CrossRef
70.
go back to reference Leonowicz, A., Rogalski, J., Jaszek, M., et al. (1999). Cooperation of fungal laccase and glucose l-oxidase in transformation of Björkman lignin and some phenolic compounds. Holzforschung, 53(4), 376–380.CrossRef Leonowicz, A., Rogalski, J., Jaszek, M., et al. (1999). Cooperation of fungal laccase and glucose l-oxidase in transformation of Björkman lignin and some phenolic compounds. Holzforschung, 53(4), 376–380.CrossRef
71.
go back to reference Li, X. (2019). Pathway study of lignin degradation by Aspergillus fumigatus from buffalo rumen, Vol. Master, Huazhong Agricultural University. Li, X. (2019). Pathway study of lignin degradation by Aspergillus fumigatus from buffalo rumen, Vol. Master, Huazhong Agricultural University.
72.
go back to reference Linger, J. G., Vardon, D. R., Guarnieri, M. T., et al. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12013–12018.CrossRef Linger, J. G., Vardon, D. R., Guarnieri, M. T., et al. (2014). Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12013–12018.CrossRef
73.
go back to reference Liu, G., & Qu, Y. (2018). Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnology Advances, 37(4), 519–529.CrossRef Liu, G., & Qu, Y. (2018). Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnology Advances, 37(4), 519–529.CrossRef
74.
go back to reference Liu, Z. H., Le, R. K., Kosa, M., et al. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef Liu, Z. H., Le, R. K., Kosa, M., et al. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef
75.
go back to reference Ma, R., Zhao, F., & Zhao, H. (2017). Reveals the pathway of lignin degradation by studied the transcriptome of Pleurotus ostreatus fermented with corn straw. Feed Research, 9, 42–48. Ma, R., Zhao, F., & Zhao, H. (2017). Reveals the pathway of lignin degradation by studied the transcriptome of Pleurotus ostreatus fermented with corn straw. Feed Research, 9, 42–48.
76.
go back to reference Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70, 485–498.CrossRef Manavalan, T., Manavalan, A., & Heese, K. (2015). Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology, 70, 485–498.CrossRef
77.
go back to reference Martínez, A. T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme & Microbial Technology, 30(4), 425–444.CrossRef Martínez, A. T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme & Microbial Technology, 30(4), 425–444.CrossRef
78.
go back to reference Marzullo, L., Cannio, R., Giardina, P., et al. (1995). Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. Journal of Biological Chemistry, 270(8), 3823–3827.CrossRef Marzullo, L., Cannio, R., Giardina, P., et al. (1995). Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. Journal of Biological Chemistry, 270(8), 3823–3827.CrossRef
79.
go back to reference Masai, E., Katayama, Y., & Fukuda, M. (2007). Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Journal of the Agricultural Chemical Society of Japan, 71(1), 1–15. Masai, E., Katayama, Y., & Fukuda, M. (2007). Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Journal of the Agricultural Chemical Society of Japan, 71(1), 1–15.
80.
go back to reference Masai, E., Sasaki, M., Minakawa, Y., et al. (2004). A novel tetrahydrofolate-dependent o-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. Journal of Bacteriology, 186(9), 2757–2765.CrossRef Masai, E., Sasaki, M., Minakawa, Y., et al. (2004). A novel tetrahydrofolate-dependent o-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. Journal of Bacteriology, 186(9), 2757–2765.CrossRef
81.
go back to reference Mathews, S. L., Pawlak, J., & Grunden, A. M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology, 99, 2939–2954.CrossRef Mathews, S. L., Pawlak, J., & Grunden, A. M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology, 99, 2939–2954.CrossRef
82.
go back to reference Mathieu, Y., Piumi, F., Valli, R., et al. (2016). Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass. Applied and Environmental Microbiology, 82, 2411–2423.CrossRef Mathieu, Y., Piumi, F., Valli, R., et al. (2016). Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass. Applied and Environmental Microbiology, 82, 2411–2423.CrossRef
83.
go back to reference Michael, B., Sabine, B., Dorothee, H. P., et al. (2004). Crystal structure of pyranose 2-oxidase from the white-rot fungus Peniophora sp. Biochemistry, 43(37), 11683–11690.CrossRef Michael, B., Sabine, B., Dorothee, H. P., et al. (2004). Crystal structure of pyranose 2-oxidase from the white-rot fungus Peniophora sp. Biochemistry, 43(37), 11683–11690.CrossRef
84.
go back to reference Min, K., Gong, G., Woo, H. M., et al. (2015). A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Scientific Reports, 5, 8245–8252.CrossRef Min, K., Gong, G., Woo, H. M., et al. (2015). A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Scientific Reports, 5, 8245–8252.CrossRef
85.
go back to reference Min, K. L., Kim, Y. H., Kim, Y. W., et al. (2001). Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Archives of Biochemistry and Biophysics, 392(2), 279–286.CrossRef Min, K. L., Kim, Y. H., Kim, Y. W., et al. (2001). Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Archives of Biochemistry and Biophysics, 392(2), 279–286.CrossRef
86.
go back to reference Moreno, A. D., Ibarra, D., Eugenio, M. E., et al. (2020). Laccases as versatile enzymes: From industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95(3), 481–494.CrossRef Moreno, A. D., Ibarra, D., Eugenio, M. E., et al. (2020). Laccases as versatile enzymes: From industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95(3), 481–494.CrossRef
87.
go back to reference Mukhopadhyay, M., & Banerjee, R. (2015). Purification and biochemical characterization of a newly produced yellow laccase from Lentinus squarrosulus MR13. Biotech, 5(3), 227–236. Mukhopadhyay, M., & Banerjee, R. (2015). Purification and biochemical characterization of a newly produced yellow laccase from Lentinus squarrosulus MR13. Biotech, 5(3), 227–236.
88.
go back to reference Munk, L., Sitarz, A. K., Kalyani, D. C., et al. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24.CrossRef Munk, L., Sitarz, A. K., Kalyani, D. C., et al. (2015). Can laccases catalyze bond cleavage in lignin? Biotechnology Advances, 33(1), 13–24.CrossRef
89.
go back to reference Nakatsubo, F., Kirk, T. K., Shimada, M., et al. (1981). Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Archives of Microbiology, 128(4), 416–420.CrossRef Nakatsubo, F., Kirk, T. K., Shimada, M., et al. (1981). Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Archives of Microbiology, 128(4), 416–420.CrossRef
90.
go back to reference Niladevi, K. N., & Mangrove, P. P. (2005). Actinomycetes as the source of ligninolytic enzymes. Actinomycetologica, 19, 40–47.CrossRef Niladevi, K. N., & Mangrove, P. P. (2005). Actinomycetes as the source of ligninolytic enzymes. Actinomycetologica, 19, 40–47.CrossRef
91.
go back to reference Ohta, M., Higuchi, T., & Iwahara, S. (1979). Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure model. Archives of Microbiology, 121(1), 23–28.CrossRef Ohta, M., Higuchi, T., & Iwahara, S. (1979). Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure model. Archives of Microbiology, 121(1), 23–28.CrossRef
92.
go back to reference Olivera, E., Carnicero, D., Jodra, R., et al. (2001). Genetically engineered Pseudomonas: A factory of new bioplastics with broad applications. Environmental Microbiology, 3(10), 612–618.CrossRef Olivera, E., Carnicero, D., Jodra, R., et al. (2001). Genetically engineered Pseudomonas: A factory of new bioplastics with broad applications. Environmental Microbiology, 3(10), 612–618.CrossRef
93.
go back to reference Palmieri, G., Giardina, P., Bianco, C., et al. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied & Environmental Microbiology, 66(3), 920–924.CrossRef Palmieri, G., Giardina, P., Bianco, C., et al. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied & Environmental Microbiology, 66(3), 920–924.CrossRef
94.
go back to reference Parshetti, G. K., Supriya, P., Dayanand, C. K., et al. (2012). Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532. Annals of Microbiology, 62(1), 217–223.CrossRef Parshetti, G. K., Supriya, P., Dayanand, C. K., et al. (2012). Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532. Annals of Microbiology, 62(1), 217–223.CrossRef
95.
go back to reference Paszczyński, A., Huynh, V. B., & Crawford, R. (1986). Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 244(2), 750–765.CrossRef Paszczyński, A., Huynh, V. B., & Crawford, R. (1986). Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 244(2), 750–765.CrossRef
96.
go back to reference Peralta, R.M., da Silva, B.P., Gomes Côrrea, et al.., 2017. Charpt 5 Enzymes from basidiomycetes-peculiar and efficient tools for biotechnology. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes. Springer, 1–64. Academic, 119–149. Peralta, R.M., da Silva, B.P., Gomes Côrrea, et al.., 2017. Charpt 5 Enzymes from basidiomycetes-peculiar and efficient tools for biotechnology. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes. Springer, 1–64. Academic, 119–149.
97.
go back to reference Pere, P., Domínguez, D. M. P., & Anett, S. (2015). From gene to biorefinery: Microbial β-etherases as promising biocatalysts for lignin valorization. Frontiers in Microbiology, 6, 916. Pere, P., Domínguez, D. M. P., & Anett, S. (2015). From gene to biorefinery: Microbial β-etherases as promising biocatalysts for lignin valorization. Frontiers in Microbiology, 6, 916.
98.
go back to reference Piontek, K., Ullrich, R., Liers, C., et al. (2010). Crystallization of a 45kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron. Acta Crystallographica, 66(6), 693–698. Piontek, K., Ullrich, R., Liers, C., et al. (2010). Crystallization of a 45kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron. Acta Crystallographica, 66(6), 693–698.
99.
go back to reference Piumi, F., Levasseur, A., Navarro, D., et al. (2014). A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Applied Microbiology and Biotechnology, 98, 10105–10118.CrossRef Piumi, F., Levasseur, A., Navarro, D., et al. (2014). A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Applied Microbiology and Biotechnology, 98, 10105–10118.CrossRef
100.
go back to reference Pozdniakova, N. N., Turkovskaia, O. V., Iudina, E. N., et al. (2006). Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Applied Biochemistry & Microbiology, 42(1), 56–61.CrossRef Pozdniakova, N. N., Turkovskaia, O. V., Iudina, E. N., et al. (2006). Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Applied Biochemistry & Microbiology, 42(1), 56–61.CrossRef
101.
go back to reference Rahmanpour, R., Rea, D., Jamshidi, S., et al. (2016). Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Archives of Biochemistry & Biophysics, 594, 54–60.CrossRef Rahmanpour, R., Rea, D., Jamshidi, S., et al. (2016). Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Archives of Biochemistry & Biophysics, 594, 54–60.CrossRef
102.
go back to reference Ralph, J., Helm, F. R., Quideau, S., et al. (1992). Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. ChemInform, 24(21), 2961–2969. Ralph, J., Helm, F. R., Quideau, S., et al. (1992). Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. ChemInform, 24(21), 2961–2969.
103.
go back to reference Rinaldi, R., Jastrzebski, R., Clough, M. T., et al. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 55(29), 8164–8215.CrossRef Rinaldi, R., Jastrzebski, R., Clough, M. T., et al. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 55(29), 8164–8215.CrossRef
104.
go back to reference Roberts, J. N., Singh, R., Grigg, J. C., et al. (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23), 5108–5119.CrossRef Roberts, J. N., Singh, R., Grigg, J. C., et al. (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23), 5108–5119.CrossRef
105.
go back to reference Rola, B., Pawlik, A., Frąc, M., et al. (2015). The phenotypic and genomic diversity of Aspergillus strains producing glucose dehydrogenase. Acta Biochimica Polonica, 62(4), 747–755.CrossRef Rola, B., Pawlik, A., Frąc, M., et al. (2015). The phenotypic and genomic diversity of Aspergillus strains producing glucose dehydrogenase. Acta Biochimica Polonica, 62(4), 747–755.CrossRef
106.
go back to reference Rosini, E., Allegretti, C., Melis, R., et al. (2016). Cascade enzymatic cleavage of the beta-O-4 linkage in a lignin model compound. Catalysis Science & Technology, 6, 2195–2205.CrossRef Rosini, E., Allegretti, C., Melis, R., et al. (2016). Cascade enzymatic cleavage of the beta-O-4 linkage in a lignin model compound. Catalysis Science & Technology, 6, 2195–2205.CrossRef
107.
go back to reference Ruiz-Dueñas, F. J., Fernández, E., Martínez, M. J., et al. (2011). Pleurotus ostreatus heme peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure. Comptes Rendus Biologies, 334(11), 795–805.CrossRef Ruiz-Dueñas, F. J., Fernández, E., Martínez, M. J., et al. (2011). Pleurotus ostreatus heme peroxidases: An in silico analysis from the genome sequence to the enzyme molecular structure. Comptes Rendus Biologies, 334(11), 795–805.CrossRef
108.
go back to reference Sainsbury, P. D., Hardiman, E. M., Ahmad, M., et al. (2013). Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. Acs Chemical Biology, 8(10), 2151–2156.CrossRef Sainsbury, P. D., Hardiman, E. M., Ahmad, M., et al. (2013). Breaking down lignin to high-value chemicals: The conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. Acs Chemical Biology, 8(10), 2151–2156.CrossRef
109.
go back to reference Sainsbury, P. D., Mineyeva, Y., Mycroft, Z., et al. (2015). Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorganic Chemistry, 60, 102–109.CrossRef Sainsbury, P. D., Mineyeva, Y., Mycroft, Z., et al. (2015). Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorganic Chemistry, 60, 102–109.CrossRef
110.
go back to reference Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.CrossRef Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.CrossRef
111.
go back to reference Santos, A., Mendes, S., Brissos, V., et al. (2013). New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Applied Microbiology & Biotechnology, 98(5), 2053–2065.CrossRef Santos, A., Mendes, S., Brissos, V., et al. (2013). New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Applied Microbiology & Biotechnology, 98(5), 2053–2065.CrossRef
112.
go back to reference Sharma, M., Chaurasia, P. K., Yadav, A., et al. (2016). Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes. Russian Journal of Bioorganic Chemistry, 42(1), 59–68.CrossRef Sharma, M., Chaurasia, P. K., Yadav, A., et al. (2016). Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes. Russian Journal of Bioorganic Chemistry, 42(1), 59–68.CrossRef
113.
go back to reference Sigoillot, J. C., Berrin, J. G., Bey, M., et al. (2012). Fungal strategies for lignin degradation. Advances in Botanical Research, 61, 263–308.CrossRef Sigoillot, J. C., Berrin, J. G., Bey, M., et al. (2012). Fungal strategies for lignin degradation. Advances in Botanical Research, 61, 263–308.CrossRef
114.
go back to reference Stephanie, L. M., Joel, P., & Amy, M. G. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology & Biotechnology, 99(7), 2939–2954.CrossRef Stephanie, L. M., Joel, P., & Amy, M. G. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology & Biotechnology, 99(7), 2939–2954.CrossRef
115.
go back to reference Stevens, J. C., & Shi, J. (2019). Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 37(8), 107418.CrossRef Stevens, J. C., & Shi, J. (2019). Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnology Advances, 37(8), 107418.CrossRef
116.
go back to reference Suderman, R. J., Dittmer, N. T., Kanost, M. R., et al. (2006). Model reactions for insect cuticle sclerotization: Cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochemistry and Molecular Biology, 36(4), 353–365.CrossRef Suderman, R. J., Dittmer, N. T., Kanost, M. R., et al. (2006). Model reactions for insect cuticle sclerotization: Cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochemistry and Molecular Biology, 36(4), 353–365.CrossRef
117.
go back to reference Sugano, Y., Matsushima, Y., Tsuchiya, K., et al. (2009). Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation, 20(3), 433–440.CrossRef Sugano, Y., Matsushima, Y., Tsuchiya, K., et al. (2009). Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation, 20(3), 433–440.CrossRef
118.
go back to reference Sugano, Y., Muramatsu, R., Ichiyanagi, A., et al. (2007). DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. Journal of Biological Chemistry, 282(50), 36652–36658.CrossRef Sugano, Y., Muramatsu, R., Ichiyanagi, A., et al. (2007). DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. Journal of Biological Chemistry, 282(50), 36652–36658.CrossRef
119.
go back to reference Suman, S. K., Dhawaria, M., Tripathi, D., et al. (2016). Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. International Biodeterioration & Biodegradation, 112, 12–17.CrossRef Suman, S. K., Dhawaria, M., Tripathi, D., et al. (2016). Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. International Biodeterioration & Biodegradation, 112, 12–17.CrossRef
120.
go back to reference Tamboli, D. P., Telke, A. A., Dawkar, V. V., et al. (2011). Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnology & Bioprocess Engineering, 16(4), 661–668.CrossRef Tamboli, D. P., Telke, A. A., Dawkar, V. V., et al. (2011). Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnology & Bioprocess Engineering, 16(4), 661–668.CrossRef
121.
go back to reference Tian, J. H., Pourcher, A. M., Bouchez, T., et al. (2014). Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Applied Microbiology & Biotechnology, 98(23), 9527–9544.CrossRef Tian, J. H., Pourcher, A. M., Bouchez, T., et al. (2014). Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Applied Microbiology & Biotechnology, 98(23), 9527–9544.CrossRef
122.
go back to reference Tsukihara, T., Yoichi, H., Takahito, W., et al. (2006). Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Applied Microbiology and Biotechnology, 71(1), 114–120.CrossRef Tsukihara, T., Yoichi, H., Takahito, W., et al. (2006). Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Applied Microbiology and Biotechnology, 71(1), 114–120.CrossRef
123.
go back to reference Ullrich, R., Nüske, J., Scheibner, K., et al. (2004). Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Applied & Environmental Microbiology, 70(8), 4575.CrossRef Ullrich, R., Nüske, J., Scheibner, K., et al. (2004). Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Applied & Environmental Microbiology, 70(8), 4575.CrossRef
124.
go back to reference Vardon, D. R., Franden, M. A., Johnson, C. W., et al. (2015). Adipic acid production from lignin. Energy & Environmental Science, 8(2), 617–628.CrossRef Vardon, D. R., Franden, M. A., Johnson, C. W., et al. (2015). Adipic acid production from lignin. Energy & Environmental Science, 8(2), 617–628.CrossRef
125.
go back to reference Varman, A. M., He, L., Follenfant, R., et al. (2016). Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Sciences, 113(40), E5802.CrossRef Varman, A. M., He, L., Follenfant, R., et al. (2016). Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proceedings of the National Academy of Sciences, 113(40), E5802.CrossRef
126.
go back to reference Wang, S. N., Chen, Q. J., Zhu, M. J., et al. (2018). An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization. Biochimie, 148, 46–54.CrossRef Wang, S. N., Chen, Q. J., Zhu, M. J., et al. (2018). An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization. Biochimie, 148, 46–54.CrossRef
127.
go back to reference Wu, W., Dutta, T., Varman, A. M., et al. (2017). Lignin valorization: Two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Scientific Reports, 7(1), 8420.CrossRef Wu, W., Dutta, T., Varman, A. M., et al. (2017). Lignin valorization: Two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Scientific Reports, 7(1), 8420.CrossRef
128.
go back to reference Xiaoshi, W., René, U., Martin, H., et al. (2015). Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proceedings of the National Academy of Sciences of the United States of America, 112(12), 3686–3691.CrossRef Xiaoshi, W., René, U., Martin, H., et al. (2015). Heme-thiolate ferryl of aromatic peroxygenase is basic and reactive. Proceedings of the National Academy of Sciences of the United States of America, 112(12), 3686–3691.CrossRef
129.
go back to reference Xie, C. (2016). The study of lignin degradation by Bacillus ligniniphilus L1, Master Degree, Jiangsu University. Xie, C. (2016). The study of lignin degradation by Bacillus ligniniphilus L1, Master Degree, Jiangsu University.
130.
go back to reference Xu, J., & Yang, Q. (2010). Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation, 21(1), 107–116.CrossRef Xu, J., & Yang, Q. (2010). Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation, 21(1), 107–116.CrossRef
131.
go back to reference Xu, R., Zhang, K., Liu, P., et al. (2018a). Lignin depolymerization and utilization by bacteria. Bioresource Technology, 269, 557–566.CrossRef Xu, R., Zhang, K., Liu, P., et al. (2018a). Lignin depolymerization and utilization by bacteria. Bioresource Technology, 269, 557–566.CrossRef
132.
go back to reference Xu, Z., Qin, L., Cai, M., Hua, W., & Jin, M. (2018b). Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environmental Science and Pollution Research, 25, 14171–14181. Xu, Z., Qin, L., Cai, M., Hua, W., & Jin, M. (2018b). Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environmental Science and Pollution Research, 25, 14171–14181.
133.
go back to reference Yamada, Y., Wang, J., Kawagishi, H., et al. (2014). Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Microbiology & Fermentation Technology, 78(12), 2128–2133. Yamada, Y., Wang, J., Kawagishi, H., et al. (2014). Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Microbiology & Fermentation Technology, 78(12), 2128–2133.
134.
go back to reference Yang, X., & Zhang, X. (2016). Transformation of biphenyl intermediate metabolite by manganese peroxidase from a white rot fungus SQ01. Acta Microbiologica Sinica, 56(6), 1044–1055. Yang, X., & Zhang, X. (2016). Transformation of biphenyl intermediate metabolite by manganese peroxidase from a white rot fungus SQ01. Acta Microbiologica Sinica, 56(6), 1044–1055.
135.
go back to reference Yang, Y. (2012). The screening of Aspergillus-Streptomyces-Pleurotus and their coimmoblized biodegradation of alkali lignin, Vol. Doctor, Dalian University of Technology. Yang, Y. (2012). The screening of Aspergillus-Streptomyces-Pleurotus and their coimmoblized biodegradation of alkali lignin, Vol. Doctor, Dalian University of Technology.
136.
go back to reference Yang, Y. S., Zhou, J. T., Lu, H., et al. (2011). Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation, 22(5), 1017–1027.CrossRef Yang, Y. S., Zhou, J. T., Lu, H., et al. (2011). Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation, 22(5), 1017–1027.CrossRef
137.
go back to reference Yang, Y. S., Zhou, J. T., Lu, H., et al. (2012). Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environmental Technology, 33(22–24), 2603–2609.CrossRef Yang, Y. S., Zhou, J. T., Lu, H., et al. (2012). Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environmental Technology, 33(22–24), 2603–2609.CrossRef
138.
go back to reference Yoshida, H., Sakai, G., Mori, K., et al. (2015). Structural analysis of fungus-derived FAD glucose dehydrogenase. Scientific Reports, 5(1), 13498.CrossRef Yoshida, H., Sakai, G., Mori, K., et al. (2015). Structural analysis of fungus-derived FAD glucose dehydrogenase. Scientific Reports, 5(1), 13498.CrossRef
139.
go back to reference Zeng, J., Mills, M. J., Simmons, B., et al. (2017). Understanding factors controlling depolymerization and polymerization in catalytic degradation of β-ether linked model lignin compounds by versatile peroxidase. Green Chemistry, 19(9), 2145–2154.CrossRef Zeng, J., Mills, M. J., Simmons, B., et al. (2017). Understanding factors controlling depolymerization and polymerization in catalytic degradation of β-ether linked model lignin compounds by versatile peroxidase. Green Chemistry, 19(9), 2145–2154.CrossRef
140.
go back to reference Zeng, J., Singh, D., Laskar, D. D., et al. (2011). Deconstruction of wheat straw lignin by Streptomyces viridosporus as insight into biological degradation mechanism. In AIChE Annual Meeting. Zeng, J., Singh, D., Laskar, D. D., et al. (2011). Deconstruction of wheat straw lignin by Streptomyces viridosporus as insight into biological degradation mechanism. In AIChE Annual Meeting.
141.
go back to reference Zeng, J., Singh, D., Laskar, D. D., & Chen, S. (2013). Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. International Journal of Environmental Science & Technology, 10(1), 165–174.CrossRef Zeng, J., Singh, D., Laskar, D. D., & Chen, S. (2013). Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. International Journal of Environmental Science & Technology, 10(1), 165–174.CrossRef
142.
go back to reference Zhang, H. (2012). Study on biodegradation of lignin and lignin model compounds by Cupriavidus sp. B-8, Master Degree, Central South University. Zhang, H. (2012). Study on biodegradation of lignin and lignin model compounds by Cupriavidus sp. B-8, Master Degree, Central South University.
143.
go back to reference Zhang, K., Huang, M., Ma, J., et al. (2018). Identification and characterization of a novel bacterial pyranose 2-oxidase from the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology Letters, 40(5), 871–880.CrossRef Zhang, K., Huang, M., Ma, J., et al. (2018). Identification and characterization of a novel bacterial pyranose 2-oxidase from the lignocellulolytic bacterium Pantoea ananatis Sd-1. Biotechnology Letters, 40(5), 871–880.CrossRef
144.
go back to reference Zhang, P. (2017). Characterization and metabolic mechanism of lignin biodegradation by Comamonas serinivorans C35. Master Degree, Jiangsu University. Zhang, P. (2017). Characterization and metabolic mechanism of lignin biodegradation by Comamonas serinivorans C35. Master Degree, Jiangsu University.
145.
go back to reference Zhang, X., Peng, X., & Eiji, M. (2014). Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation – A review. Acta Microbiologica Sinica, 54(8), 854–867. Zhang, X., Peng, X., & Eiji, M. (2014). Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation – A review. Acta Microbiologica Sinica, 54(8), 854–867.
146.
go back to reference Zhang, Y. (2013). The mechanism of lignin and related mode benzene compounds degradation by Pandoraea sp. B-6 and Cupriavidus basilensis B-8, Doctor Degree, Central South University. Zhang, Y. (2013). The mechanism of lignin and related mode benzene compounds degradation by Pandoraea sp. B-6 and Cupriavidus basilensis B-8, Doctor Degree, Central South University.
147.
go back to reference Zhu, D., Zhang, P., Xie, C., et al. (2017). Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnology for Biofuels, 10(1), 44.CrossRef Zhu, D., Zhang, P., Xie, C., et al. (2017). Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnology for Biofuels, 10(1), 44.CrossRef
Metadata
Title
The Route of Lignin Biodegradation for Its Valorization
Author
Weihua Qiu
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_12