Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

The strong convergence theorems for split common fixed point problem ofasymptotically nonexpansive mappings in Hilbert spaces

Authors: Xin-Fang Zhang, Lin Wang, Zhao Li Ma, Li Juan Qin

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an iterative algorithm is introduced to solve the split common fixedpoint problem for asymptotically nonexpansive mappings in Hilbert spaces. Theiterative algorithm presented in this paper is shown to possess strong convergencefor the split common fixed point problem of asymptotically nonexpansive mappingsalthough the mappings do not have semi-compactness. Our results improve and developprevious methods for solving the split common fixed point problem.
MSC: 47H09, 47J25.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the finalmanuscript.

1 Introduction and preliminaries

Throughout this paper, let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif bereal Hilbert spaces whose inner product and norm are denoted by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq3_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq4_HTML.gif , respectively; let C andQ be nonempty closed convex subsets of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif ,respectively. A mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq5_HTML.gif is said to benonexpansive if https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq6_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq7_HTML.gif .A mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq5_HTML.gif is said to bequasi-nonexpansive if https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq8_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq9_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq10_HTML.gif , where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq11_HTML.gif is the set of fixed pointsof T. A mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq12_HTML.gif is calledasymptotically nonexpansive if there exists a sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq13_HTML.gif satisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq14_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq15_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq7_HTML.gif .A mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq5_HTML.gif is semi-compact if, forany bounded sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq16_HTML.gif with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq17_HTML.gif , there exists asubsequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq18_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq19_HTML.gif converges strongly to somepoint https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq20_HTML.gif .
The split feasibility problem (SFP) is to find a point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq21_HTML.gif with the property
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ1_HTML.gif
(1.1)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif is a bounded linear operator.
Assuming that SFP (1.1) is consistent (i.e., (1.1) has a solution), itis not hard to see that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq9_HTML.gif solves(1.1) if and only if it solves the following fixed point equation:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ2_HTML.gif
(1.2)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq23_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq24_HTML.gif arethe (orthogonal) projections onto C and Q, respectively, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq25_HTML.gif isany positive constant, and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotes the adjoint of A.
The SFP in finite-dimensional Hilbert spaces was first introduced by Censor andElfving [1] for modeling inverse problems whicharise from phase retrievals and in medical image reconstruction [2]. Recently, it has been found that the SFP can also beused in various disciplines such as image restoration, computer tomograph, and radiationtherapy treatment planning [27].
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq27_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq28_HTML.gif be two mappings satisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq29_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq30_HTML.gif ,respectively; let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif be a bounded linear operator. The split common fixed point problem (SCFP) formappings S and T is to find a point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq21_HTML.gif with the property
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ3_HTML.gif
(1.3)
We use Γ to denote the set of solutions of SCFP (1.3), that is, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq31_HTML.gif .
Since each closed and convex subset may be considered as a fixed point set of aprojection on the subset, hence the split common fixed point problem (SCFP) isa generalization of the split feasibility problem (SFP) and the convexfeasibility problem (CFP) [5].
Split feasibility problems and split common fixed point problems have been studied bysome authors [815]. In 2010,Moudafi [10] proposed the following iterationmethod to approximate a split common fixed point of demi-contractive mappings: forarbitrarily chosen https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equa_HTML.gif
and he proved that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges weakly to a split common fixedpoint https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq34_HTML.gif , where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq35_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq28_HTML.gif are two demi-contractive mappings, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif is a bounded linear operator.
Using the iterative algorithm above, in 2011, Moudafi [9] also obtained a weak convergence theorem for the split commonfixed point problem of quasi-nonexpansive mappings in Hilbert spaces. After that, someauthors also proposed some iterative algorithms to approximate a split common fixedpoint of other nonlinear mappings, such as nonspreading type mappings [16], asymptotically quasi-nonexpansive mappings[12], κ-asymptoticallystrictly pseudononspreading mappings [17],asymptotically strictly pseudocontraction mappings [18]etc., but they just obtained weak convergence theoremswhen those mappings do not have semi-compactness. This naturally brings us to thefollowing question.
Can we construct an iterative scheme which can guarantee the strong convergence forsplit common fixed point problems without assumption ofsemi-compactness?
In this paper, we introduce the following iterative scheme. Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is defined as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ4_HTML.gif
(1.4)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq37_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq38_HTML.gif are two asymptotically nonexpansive mappings, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif is a bounded linear operator, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotes the adjoint of A. Under some suitable conditions on parameters, theiterative scheme https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is shown to converge strongly to a splitcommon fixed point of asymptotically nonexpansive mappings https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif without the assumption of semi-compactness on https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif .
The following lemma and results are useful for our proofs.
Lemma 1.1[19]
LetEbe a real uniformly convex Banach space, Kbea nonempty closed subset ofE, and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq41_HTML.gif be an asymptoticallynonexpansive mapping. Then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq42_HTML.gif isdemiclosed at zero, that is, if https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq43_HTML.gif convergesweakly to a point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq44_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq17_HTML.gif ,then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq45_HTML.gif .
Let C be a closed convex subset of a real Hilbert space H. https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq23_HTML.gif denotes the metric projection of H onto C. It is well known that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq23_HTML.gif ischaracterized by the properties: for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq46_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq47_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ5_HTML.gif
(1.5)
and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ6_HTML.gif
(1.6)
In a real Hilbert space H, it is also well known that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ7_HTML.gif
(1.7)
and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ8_HTML.gif
(1.8)

2 Main results

Theorem 2.1Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif be twoHilbert spaces, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif bea bounded linear operator, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq37_HTML.gif bean asymptotically nonexpansive mapping with the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq48_HTML.gif satisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq49_HTML.gif ,and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq38_HTML.gif bean asymptotically nonexpansive mapping with the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq50_HTML.gif satisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq51_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq52_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq53_HTML.gif , respectively.Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,and let the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif be defined as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ9_HTML.gif
(2.1)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotesthe adjoint ofA, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq54_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq55_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq56_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq57_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq59_HTML.gif , then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges stronglyto https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq60_HTML.gif .
Proof We will divide the proof into five steps.
Step 1. We first show that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq61_HTML.gif is closedand convex for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq62_HTML.gif .
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,so https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq63_HTML.gif isclosed and convex. Assume that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq61_HTML.gif is closedand convex. For any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq64_HTML.gif ,since
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equb_HTML.gif
we know that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq65_HTML.gif is closed and convex. Therefore https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq61_HTML.gif is closedand convex for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif .
Step 2. We prove https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq66_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif .
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq67_HTML.gif , then from (2.1) we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ10_HTML.gif
(2.2)
where
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ11_HTML.gif
(2.3)
Substituting (2.3) into (2.2), we can obtain that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ12_HTML.gif
(2.4)
In addition, it follows from (2.1) that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ13_HTML.gif
(2.5)
Therefore, from (2.4) and (2.5), we know that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq68_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq69_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif .
Step 3. We will show that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is a Cauchy sequence.
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq70_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq71_HTML.gif ,then
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ14_HTML.gif
(2.6)
It means that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is bounded. For any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif , by using(1.6), we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equc_HTML.gif
which implies that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq72_HTML.gif . Thus https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq73_HTML.gif is nondecreasing. Therefore, by the boundednessof https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq74_HTML.gif exists. For somepositive integers m, n with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq75_HTML.gif , from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq76_HTML.gif and (1.6), we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ15_HTML.gif
(2.7)
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq74_HTML.gif exists, it followsfrom (2.7) that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq77_HTML.gif . Therefore https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq78_HTML.gif is a Cauchy sequence.
Step 4. We will show that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq79_HTML.gif .
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq80_HTML.gif ,we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ16_HTML.gif
(2.8)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ17_HTML.gif
(2.9)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ18_HTML.gif
(2.10)
Notice that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq81_HTML.gif , it follows from (2.4)that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equd_HTML.gif
thus, since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is bounded and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq14_HTML.gif ,from (2.8) we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ19_HTML.gif
(2.11)
On the other hand, since
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Eque_HTML.gif
we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equf_HTML.gif
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq56_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq14_HTML.gif ,we know that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ20_HTML.gif
(2.12)
In addition, since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq82_HTML.gif , we know that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq83_HTML.gif . So from
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equg_HTML.gif
we can obtain that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ21_HTML.gif
(2.13)
Similarly, we have
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ22_HTML.gif
(2.14)
Step 5. We will show that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly to an element ofΓ.
Since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is a Cauchy sequence, we may assume that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq84_HTML.gif ,from (2.8) we have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq85_HTML.gif ,which implies that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq86_HTML.gif .So it follows from (2.13) and Lemma 1.1 that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq87_HTML.gif .
In addition, since A is a bounded linear operator, we have that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq88_HTML.gif . Hence, itfollows from (2.14) and Lemma 1.1 that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq89_HTML.gif . This means that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq60_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly to https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq34_HTML.gif . The proof iscompleted. □
In Theorem 2.1, as https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq90_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq91_HTML.gif ,we have the following result.
Corollary 2.2Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif be aHilbert space, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq92_HTML.gif bean asymptotically nonexpansive mapping with a sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq93_HTML.gif satisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq14_HTML.gif .The sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is defined as follows: https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ23_HTML.gif
(2.15)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq94_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq55_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq56_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq95_HTML.gif , then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly to a fixedpoint https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq96_HTML.gif ofT.
In Theorem 2.1, when https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif aretwo nonexpansive mappings, the following result holds.
Corollary 2.3Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif be twoHilbert spaces, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif bea bounded linear operator, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq37_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq38_HTML.gif betwo nonexpansive mappings such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq52_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq53_HTML.gif , respectively.Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,and let the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif be defined as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ24_HTML.gif
(2.16)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotesthe adjoint ofA, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq54_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq55_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq56_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq59_HTML.gif , then https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges stronglyto https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq34_HTML.gif .
Remark 2.4 When https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif aretwo quasi-nonexpansive mappings and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq97_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq98_HTML.gif are demiclosed at zero, Corollary 2.3 also holds.
Example 2.5 Let C be a unit ball in a real Hilbert space https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq99_HTML.gif ,and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq100_HTML.gif be amapping defined by
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equh_HTML.gif
It is proved in Goebel and Kirk [20] that
(i)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq101_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq102_HTML.gif ;
 
(ii)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq103_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq102_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq104_HTML.gif .
 
Taking https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq105_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq106_HTML.gif , itis easy to see that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq107_HTML.gif .So we can take https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq108_HTML.gif ,and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq109_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq110_HTML.gif ,then
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equi_HTML.gif
Therefore https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif is anasymptotically nonexpansive mapping from C into itself with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq111_HTML.gif .
Let D be an orthogonal subspace of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq112_HTML.gif with thenorm https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq113_HTML.gif and the inner product https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq114_HTML.gif for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq115_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq116_HTML.gif . For each https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq117_HTML.gif , we define amapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq118_HTML.gif by
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equj_HTML.gif
It is easy to show that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq119_HTML.gif or https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq120_HTML.gif for any https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq121_HTML.gif .Therefore https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif is anasymptotically nonexpansive mapping from D into itself with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq122_HTML.gif since https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq123_HTML.gif for anysequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq93_HTML.gif with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq14_HTML.gif .
Obviously, C and D are closed convex subsets of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq99_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq124_HTML.gif ,respectively. Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq125_HTML.gif be defined by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq126_HTML.gif for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq127_HTML.gif . ThenA is a bounded linear operator with adjoint operator https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq128_HTML.gif for https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq129_HTML.gif . Clearly, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq130_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq131_HTML.gif .
Taking https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq132_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq108_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq133_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq134_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq135_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq136_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq58_HTML.gif . Itfollows from Theorem 2.1 that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly to https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq137_HTML.gif .

3 Applications and examples

Application to the equilibrium problem

Let H be a real Hilbert space, C be a nonempty closed and convexsubset of H, and let the bifunction https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq138_HTML.gif satisfy the following conditions:
(A1) https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq139_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq140_HTML.gif ;
(A2) https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq141_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq142_HTML.gif ;
(A3) For all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq143_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq144_HTML.gif ;
(A4) For each https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq9_HTML.gif , thefunction https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq145_HTML.gif is convex and lower semi-continuous.
The so-called equilibrium problem for F is to find a point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq20_HTML.gif such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq146_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq147_HTML.gif .The set of its solutions is denoted by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq148_HTML.gif .
Lemma 3.1[21]
LetCbe a nonempty closed convex subset of a HilbertspaceH, and let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq138_HTML.gif be a bifunctionsatisfying (A1)-(A4). Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq149_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq46_HTML.gif .Then there exists https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq150_HTML.gif suchthat
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equk_HTML.gif
Lemma 3.2[21]
Assume that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq138_HTML.gif satisfies(A1)-(A4). For https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq149_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq46_HTML.gif ,define a mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq151_HTML.gif as follows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equl_HTML.gif
Then
(1)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq152_HTML.gif is single-valued;
 
(2)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq152_HTML.gif is firmly nonexpansive, that is, for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq153_HTML.gif ,
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equm_HTML.gif
 
(3)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq154_HTML.gif ;
 
(4)
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq148_HTML.gif is nonempty, closed and convex.
 
Theorem 3.3Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif be twoHilbert spaces, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif bea bounded linear operator, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq28_HTML.gif bea nonexpansive mapping, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq155_HTML.gif be a bifunctionsatisfying (A1)-(A4). Assume that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq156_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq157_HTML.gif .Taking https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,for arbitrarily chosen https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif ,the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is defined asfollows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ25_HTML.gif
(3.1)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotesthe adjoint ofA, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq158_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq159_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq160_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq161_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq162_HTML.gif , then thesequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly toa point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq34_HTML.gif .
Proof It follows from Lemma 3.2 that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq163_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq154_HTML.gif is nonempty, closed and convex and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq152_HTML.gif is a firmly nonexpansive mapping. Hence all conditions in Corollary 2.3 aresatisfied. The conclusion of Theorem 3.3 can be directly obtained fromCorollary 2.3. □
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq164_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq165_HTML.gif be two real Hilbert spaces. Let C be a closed convex subset of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq164_HTML.gif ,K be a closed convex subset of https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq165_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq166_HTML.gif be a bounded linear operator. Assume that F is a bi-function from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq167_HTML.gif into R and G is a bi-function from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq168_HTML.gif intoR. The split equilibrium problem (SEP) is to
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ26_HTML.gif
(3.2)
and
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ27_HTML.gif
(3.3)
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq169_HTML.gif denote the solution setof the split equilibrium problem SEP.
Example 3.4[22]
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq170_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq171_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq172_HTML.gif . Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq173_HTML.gif for all R, then A is a bounded linear operator. Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq138_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq174_HTML.gif bedefined by https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq175_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq176_HTML.gif , respectively. Clearly, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq177_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq178_HTML.gif . So https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq179_HTML.gif .
Example 3.5[22]
Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq180_HTML.gif with the standard norm https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq181_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq182_HTML.gif with the norm https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq183_HTML.gif for some https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq184_HTML.gif . https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq185_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq186_HTML.gif . Define a bi-function https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq187_HTML.gif ,where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq188_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq189_HTML.gif , thenF is a bi-function from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq167_HTML.gif intoR with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq190_HTML.gif . For each https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq191_HTML.gif ,let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq192_HTML.gif ,then A is a bounded linear operator from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq164_HTML.gif into https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq165_HTML.gif .In fact, it is also easy to verify that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq193_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq194_HTML.gif for some https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq195_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq196_HTML.gif .Now define another bi-function G as follows: https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq197_HTML.gif for all https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq198_HTML.gif .Then G is a bi-function from https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq168_HTML.gif intoR with https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq199_HTML.gif .
Clearly, when https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq200_HTML.gif , we have https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq201_HTML.gif . So https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq202_HTML.gif .
Corollary 3.6Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq1_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq2_HTML.gif be twoHilbert spaces, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq22_HTML.gif bea bounded linear operator, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq155_HTML.gif be a bifunctionsatisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq203_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq204_HTML.gif be a bifunctionsatisfying https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq205_HTML.gif .Taking https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,for arbitrarily chosen https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif ,the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif is defined asfollows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ28_HTML.gif
(3.4)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq26_HTML.gif denotesthe adjoint ofA, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq158_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq159_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq160_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq161_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq202_HTML.gif , then thesequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly toa point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq206_HTML.gif .
Remark 3.7 Since Example 3.4 and Example 3.5 satisfy the conditionsof Corollary 2.3, the split equilibrium problems in Example 3.4 andExample 3.5 can be solved by algorithm (3.4).

Application to the hierarchial variational inequality problem

Let H be a real Hilbert space, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif be two nonexpansive mappings from H to H such that https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq52_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq53_HTML.gif .
The so-called hierarchical variational inequality problem for nonexpansive mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif with respect to a nonexpansive mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq207_HTML.gif isto find a point https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq87_HTML.gif such that
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ29_HTML.gif
(3.5)
It is easy to see that (3.5) is equivalent to the following fixed point problem:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ30_HTML.gif
(3.6)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq208_HTML.gif is the metric projection from H onto https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq209_HTML.gif . Letting https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq210_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq211_HTML.gif (the fixed point set ofthe mapping https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq212_HTML.gif )and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq213_HTML.gif (theidentity mapping on H), then problem (3.6) is equivalent to the followingsplit feasibility problem:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ31_HTML.gif
(3.7)
Hence from Theorem 2.1 we have the following theorem.
Theorem 3.8LetH, https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq39_HTML.gif , https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq40_HTML.gif ,CandQbe the same as above.Let https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq32_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq36_HTML.gif ,and let the sequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif be defined asfollows:
https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_Equ32_HTML.gif
(3.8)
where https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq94_HTML.gif and https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq55_HTML.gif satisfies https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq56_HTML.gif .If https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq214_HTML.gif , then thesequence https://static-content.springer.com/image/art%3A10.1186%2F1029-242X-2015-1/MediaObjects/13660_2014_1289_IEq33_HTML.gif converges strongly toa solution of the hierarchical variational inequality problem (3.5).

Acknowledgements

The authors would like to express their thanks to the reviewers and editors for theirhelpful suggestions and advice. This work was supported by the National NaturalScience Foundation of China (Grant No. 11361070) and the Scientific ResearchFoundation of Postgraduate of Yunnan University of Finance and Economics.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the finalmanuscript.
Literature
1.
go back to reference Byrne C: Iterative oblique projection onto convex subsets and the split feasibilityproblems.Inverse Probl. 2002, 18:441–453. 10.1088/0266-5611/18/2/310CrossRefMATH Byrne C: Iterative oblique projection onto convex subsets and the split feasibilityproblems.Inverse Probl. 2002, 18:441–453. 10.1088/0266-5611/18/2/310CrossRefMATH
2.
go back to reference Censor Y, Elfving T: A multiprojection algorithm using Bregman projection in a product space.Numer. Algorithms 1994, 8:221–239. 10.1007/BF02142692MathSciNetCrossRefMATH Censor Y, Elfving T: A multiprojection algorithm using Bregman projection in a product space.Numer. Algorithms 1994, 8:221–239. 10.1007/BF02142692MathSciNetCrossRefMATH
3.
go back to reference Censor Y, Elfving T, Kopf N, Bortfeld T: The multiple-sets split feasibility problem and its applications.Inverse Probl. 2005, 21:2071–2084. 10.1088/0266-5611/21/6/017MathSciNetCrossRefMATH Censor Y, Elfving T, Kopf N, Bortfeld T: The multiple-sets split feasibility problem and its applications.Inverse Probl. 2005, 21:2071–2084. 10.1088/0266-5611/21/6/017MathSciNetCrossRefMATH
4.
go back to reference Censor Y, Seqal A: The split common fixed point problem for directed operators.J. Convex Anal. 2009, 16:587–600.MathSciNetMATH Censor Y, Seqal A: The split common fixed point problem for directed operators.J. Convex Anal. 2009, 16:587–600.MathSciNetMATH
5.
go back to reference Censor Y, Bortfeld T, Martin B, Trofimov T: A unified approach for inversion problem in intensity-modulated radiationtherapy.Phys. Med. Biol. 2006, 51:2353–2365. 10.1088/0031-9155/51/10/001CrossRef Censor Y, Bortfeld T, Martin B, Trofimov T: A unified approach for inversion problem in intensity-modulated radiationtherapy.Phys. Med. Biol. 2006, 51:2353–2365. 10.1088/0031-9155/51/10/001CrossRef
6.
go back to reference Censor Y, Motova A, Segal A: Perturbed projections and subgradient projections for the multiple-sets splitfeasibility problems.J. Math. Anal. Appl. 2007, 327:1244–1256. 10.1016/j.jmaa.2006.05.010MathSciNetCrossRefMATH Censor Y, Motova A, Segal A: Perturbed projections and subgradient projections for the multiple-sets splitfeasibility problems.J. Math. Anal. Appl. 2007, 327:1244–1256. 10.1016/j.jmaa.2006.05.010MathSciNetCrossRefMATH
7.
go back to reference Lopez G, Martin V, Xu HK: Iterative algorithms for the multiple-sets split feasibility problem. In Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning andInverse Problems. Edited by: Censor Y, Jiang M, Wang G. Medical Physics Publishing, Madison; 2009:243–279. Lopez G, Martin V, Xu HK: Iterative algorithms for the multiple-sets split feasibility problem. In Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning andInverse Problems. Edited by: Censor Y, Jiang M, Wang G. Medical Physics Publishing, Madison; 2009:243–279.
8.
go back to reference Dang Y, Gao Y: The strong convergence of a KM-CQ-like algorithm for a split feasibilityproblem.Inverse Probl. 2011., 27: Article ID 015007 Dang Y, Gao Y: The strong convergence of a KM-CQ-like algorithm for a split feasibilityproblem.Inverse Probl. 2011., 27: Article ID 015007
9.
go back to reference Moudafi A: A note on the split common fixed point problem for quasi-nonexpansiveoperators.Nonlinear Anal. 2011, 74:4083–4087. 10.1016/j.na.2011.03.041MathSciNetCrossRefMATH Moudafi A: A note on the split common fixed point problem for quasi-nonexpansiveoperators.Nonlinear Anal. 2011, 74:4083–4087. 10.1016/j.na.2011.03.041MathSciNetCrossRefMATH
10.
go back to reference Moudafi A: The split common fixed point problem for demi-contractive mappings.Inverse Probl. 2010., 26: Article ID 055007 Moudafi A: The split common fixed point problem for demi-contractive mappings.Inverse Probl. 2010., 26: Article ID 055007
11.
go back to reference Maruster S, Popirlan C: On the Mann-type iteration and convex feasibility problem.J. Comput. Appl. Math. 2008, 212:390–396. 10.1016/j.cam.2006.12.012MathSciNetCrossRefMATH Maruster S, Popirlan C: On the Mann-type iteration and convex feasibility problem.J. Comput. Appl. Math. 2008, 212:390–396. 10.1016/j.cam.2006.12.012MathSciNetCrossRefMATH
12.
go back to reference Qin LJ, Wang L, Chang SS: Multiple-set split feasibility problem for a finite family of asymptoticallyquasi-nonexpansive mappings.Panam. Math. J. 2012,22(1):37–45.MATH Qin LJ, Wang L, Chang SS: Multiple-set split feasibility problem for a finite family of asymptoticallyquasi-nonexpansive mappings.Panam. Math. J. 2012,22(1):37–45.MATH
13.
go back to reference Wang F, Xu HK: Approximation curve and strong convergence of the CQ algorithm for the splitfeasibility problem.J. Inequal. Appl. 2010., 2010: Article ID 102085 10.1155/2010/102085 Wang F, Xu HK: Approximation curve and strong convergence of the CQ algorithm for the splitfeasibility problem.J. Inequal. Appl. 2010., 2010: Article ID 102085 10.1155/2010/102085
14.
go back to reference Xu HK: A variable Krasnosel’skii-Mann algorithm and the multiple-set splitfeasibility problem.Inverse Probl. 2006, 22:2021–2034. 10.1088/0266-5611/22/6/007CrossRefMATH Xu HK: A variable Krasnosel’skii-Mann algorithm and the multiple-set splitfeasibility problem.Inverse Probl. 2006, 22:2021–2034. 10.1088/0266-5611/22/6/007CrossRefMATH
15.
go back to reference Yang Q: The relaxed CQ algorithm for solving the split feasibility problem.Inverse Probl. 2004, 20:1261–1266. 10.1088/0266-5611/20/4/014MathSciNetCrossRefMATH Yang Q: The relaxed CQ algorithm for solving the split feasibility problem.Inverse Probl. 2004, 20:1261–1266. 10.1088/0266-5611/20/4/014MathSciNetCrossRefMATH
16.
go back to reference Chang SS, Kim JK, Cho YJ, Sim JY: Weak-and strong-convergence theorems of solution to split feasibility problem fornonspreading type mapping in Hilbert spaces.Fixed Point Theory Appl. 2014., 2014: Article ID 11 Chang SS, Kim JK, Cho YJ, Sim JY: Weak-and strong-convergence theorems of solution to split feasibility problem fornonspreading type mapping in Hilbert spaces.Fixed Point Theory Appl. 2014., 2014: Article ID 11
17.
go back to reference Quan J, Chang SS, Zhang X: Multiple-set split feasibility problems fork-strictly pseudononspreadingmapping in Hilbert spaces.Abstr. Appl. Anal. 2013., 2013: Article ID 342545 10.1155/2013/342545 Quan J, Chang SS, Zhang X: Multiple-set split feasibility problems fork-strictly pseudononspreadingmapping in Hilbert spaces.Abstr. Appl. Anal. 2013., 2013: Article ID 342545 10.1155/2013/342545
18.
go back to reference Chang SS, Cho YJ, Kim JK, Zhang WB, Yang L: Multiple-set split feasibility problems for asymptotically strictpseudocontractions.Abstract and Applied Analysis 2012., 2012: Article ID 491760 10.1155/2012/491760 Chang SS, Cho YJ, Kim JK, Zhang WB, Yang L: Multiple-set split feasibility problems for asymptotically strictpseudocontractions.Abstract and Applied Analysis 2012., 2012: Article ID 491760 10.1155/2012/491760
19.
go back to reference Chang SS, Cho YJ, Zhou H: Demi-closed principle and weak convergence problems for asymptoticallynonexpansive mappings.J. Korean Math. Soc. 2001, 38:1245–1260.MathSciNetMATH Chang SS, Cho YJ, Zhou H: Demi-closed principle and weak convergence problems for asymptoticallynonexpansive mappings.J. Korean Math. Soc. 2001, 38:1245–1260.MathSciNetMATH
20.
go back to reference Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings.Proc. Am. Math. Soc. 1972, 35:171–174. 10.1090/S0002-9939-1972-0298500-3MathSciNetCrossRefMATH Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings.Proc. Am. Math. Soc. 1972, 35:171–174. 10.1090/S0002-9939-1972-0298500-3MathSciNetCrossRefMATH
21.
go back to reference Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces.J. Nonlinear Convex Anal. 2005, 6:117–136.MathSciNetMATH Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces.J. Nonlinear Convex Anal. 2005, 6:117–136.MathSciNetMATH
22.
go back to reference He Z: The split equilibrium problem and its convergence algorithms.J. Inequal. Appl. 2012., 2012: Article ID 162 He Z: The split equilibrium problem and its convergence algorithms.J. Inequal. Appl. 2012., 2012: Article ID 162
Metadata
Title
The strong convergence theorems for split common fixed point problem ofasymptotically nonexpansive mappings in Hilbert spaces
Authors
Xin-Fang Zhang
Lin Wang
Zhao Li Ma
Li Juan Qin
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/1029-242X-2015-1

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner