Skip to main content
Top
Published in: Topics in Catalysis 1-4/2022

28-10-2021 | Original Paper

The Subsurface Diffusion of Hydrogen on Rutile TiO2 Surfaces: A Periodic DFT Study

Authors: Baohuan Wei, Monica Calatayud

Published in: Topics in Catalysis | Issue 1-4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Titanium oxide (TiO2) is an oxide with a wide range of technological and industrial applications. The interaction of hydrogen with TiO2 surface is an important step in many catalytic processes, such as spillover or water photosplitting. In the last years, the role of the subsurface hydrogen has been invoked many times to explain different phenomena, from black titania to reversible storage. In this work, we systematically investigate the paths for hydrogen diffusion from surface into subsurface focusing on the surface topology, the thermal and isotopic effects, and the degree of reduction of the substrate, by means of state of the art periodic DFT calculations. We find differences in the behavior of the rutile TiO2 surfaces (001), (100) and (110). Reaction energies are lightly exothermic, from − 0.02 to − 0.15 eV, and activation energies range from 0.39 to 1.00 eV. Deuterium diffusion from rutile (110) surface to the bulk, as well as thermal effects, were found to affect less than 0.04 eV the energy profile. On the contrary, the degree of reduction of the rutile (110) was found to noticeably decrease the activation barrier down to 0.8 eV for the (110) slab. We analyze structural, electronic and reactivity parameters that affect the kinetic barriers for the surface to subsurface H diffusion, and conclude that topology and reduction degree are valid strategies to tune the surface-to-bulk migration process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440):215–219PubMedCrossRef Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440):215–219PubMedCrossRef
2.
go back to reference Vilaca G, Jousseaume B, Mahieux C, Belin C, Cachet H, Bernard MC, Vivier V, Toupance T (2006) Tin dioxide materials chemically modified with trialkynylorganotins: functional nanohybrids for photovoltaic applications. Adv Mater 18(8):1073–1077CrossRef Vilaca G, Jousseaume B, Mahieux C, Belin C, Cachet H, Bernard MC, Vivier V, Toupance T (2006) Tin dioxide materials chemically modified with trialkynylorganotins: functional nanohybrids for photovoltaic applications. Adv Mater 18(8):1073–1077CrossRef
3.
go back to reference Zhou X, Wang Z, Xia X, Shao G, Homewood K, Gao Y (2018) Synergistic cooperation of rutile TiO2 002}, {101}, and {110 facets for hydrogen sensing. ACS Appl Mater Interfaces 10(33):28199–28209PubMedCrossRef Zhou X, Wang Z, Xia X, Shao G, Homewood K, Gao Y (2018) Synergistic cooperation of rutile TiO2 002}, {101}, and {110 facets for hydrogen sensing. ACS Appl Mater Interfaces 10(33):28199–28209PubMedCrossRef
4.
go back to reference Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15(7–8):624–627CrossRef Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15(7–8):624–627CrossRef
5.
go back to reference Tada H, Fujishima M, Kobayashi H (2011) Photodeposition of metal sulfide quantum dots on titanium (iv) dioxide and the applications to solar energy conversion. Chem Soc Rev 40(7):4232–4243PubMedCrossRef Tada H, Fujishima M, Kobayashi H (2011) Photodeposition of metal sulfide quantum dots on titanium (iv) dioxide and the applications to solar energy conversion. Chem Soc Rev 40(7):4232–4243PubMedCrossRef
6.
go back to reference Maeda Y, Iizuka Y, Kohyama M (2013) Generation of oxygen vacancies at a au/TiO2 perimeter interface during co oxidation detected by in situ electrical conductance measurement. J Am Chem Soc 135(2):906–909PubMedCrossRef Maeda Y, Iizuka Y, Kohyama M (2013) Generation of oxygen vacancies at a au/TiO2 perimeter interface during co oxidation detected by in situ electrical conductance measurement. J Am Chem Soc 135(2):906–909PubMedCrossRef
7.
go back to reference Sun C, Jia Y, Yang X-H, Yang H-G, Yao X, Lu GQ, Selloni A, Smith SC (2011) Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J Phys Chem C 115(51):25590–25594CrossRef Sun C, Jia Y, Yang X-H, Yang H-G, Yao X, Lu GQ, Selloni A, Smith SC (2011) Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J Phys Chem C 115(51):25590–25594CrossRef
8.
go back to reference Joo JB, Dillon R, Lee I, Yin Y, Bardeen CJ, Zaera F (2014) Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2. Proc Natl Acad Sci 111(22):7942–7947PubMedPubMedCentralCrossRef Joo JB, Dillon R, Lee I, Yin Y, Bardeen CJ, Zaera F (2014) Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2. Proc Natl Acad Sci 111(22):7942–7947PubMedPubMedCentralCrossRef
9.
go back to reference Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Progress in black titania: a new material for advanced photocatalysis. Adv Energy Mater 6(17):1600452CrossRef Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Progress in black titania: a new material for advanced photocatalysis. Adv Energy Mater 6(17):1600452CrossRef
10.
go back to reference Mao W, Wilde M, Ogura S, Chen J, Fukutani K, Matsuzaki H, Terai T (2018) Hydrogen-accelerated phase transition and diffusion in TiO2 thin films. J Phys Chem C 122(40):23026–23033CrossRef Mao W, Wilde M, Ogura S, Chen J, Fukutani K, Matsuzaki H, Terai T (2018) Hydrogen-accelerated phase transition and diffusion in TiO2 thin films. J Phys Chem C 122(40):23026–23033CrossRef
11.
go back to reference Li X, Lin J, Li L, Huang Y, Pan X, Collins SE, Ren Y, Su Y, Kang L, Liu X et al (2020) Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew Chem Int Ed 59(45):19983–19989CrossRef Li X, Lin J, Li L, Huang Y, Pan X, Collins SE, Ren Y, Su Y, Kang L, Liu X et al (2020) Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew Chem Int Ed 59(45):19983–19989CrossRef
12.
go back to reference Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRef
13.
go back to reference Yin X-L, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll C (2008) Diffusion versus desorption: complex behavior of h atoms on an oxide surface. Chem Phys Chem 9(2):253–256PubMedCrossRef Yin X-L, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll C (2008) Diffusion versus desorption: complex behavior of h atoms on an oxide surface. Chem Phys Chem 9(2):253–256PubMedCrossRef
14.
go back to reference Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmel GA, Lyubinetsky I (2012) Hydrogen reactivity on highly hydroxylated TiO2 (110) surfaces prepared via carboxylic acid adsorption and photolysis. Phys Chem Chem Phys 14(9):3066–3074PubMedCrossRef Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmel GA, Lyubinetsky I (2012) Hydrogen reactivity on highly hydroxylated TiO2 (110) surfaces prepared via carboxylic acid adsorption and photolysis. Phys Chem Chem Phys 14(9):3066–3074PubMedCrossRef
15.
go back to reference Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33(1):333–359CrossRef Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33(1):333–359CrossRef
16.
go back to reference Chen X, Liu L, Peter YY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750PubMedCrossRef Chen X, Liu L, Peter YY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750PubMedCrossRef
17.
go back to reference Hu YH (2012) A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew Chem Int Ed 51(50):12410–12412CrossRef Hu YH (2012) A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew Chem Int Ed 51(50):12410–12412CrossRef
18.
go back to reference Leshuk T, Parviz R, Robert A, Gu F (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater 5(6):1892–1895CrossRef Leshuk T, Parviz R, Robert A, Gu F (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater 5(6):1892–1895CrossRef
19.
go back to reference Wang X, Zhang S, Xie Y, Wang H, Yu H, Shen Y, Li Z, Zhang S, Peng F (2016) Branched hydrogenated TiO2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light. Int J Hydrogen Energy 41(44):20192–20197CrossRef Wang X, Zhang S, Xie Y, Wang H, Yu H, Shen Y, Li Z, Zhang S, Peng F (2016) Branched hydrogenated TiO2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light. Int J Hydrogen Energy 41(44):20192–20197CrossRef
20.
go back to reference Xia T, Chen X (2013) Revealing the structural properties of hydrogenated black Ti nanocrystals. J Mater Chem A 1(9):2983–2989CrossRef Xia T, Chen X (2013) Revealing the structural properties of hydrogenated black Ti nanocrystals. J Mater Chem A 1(9):2983–2989CrossRef
21.
go back to reference Yan Y, Han M, Konkin A, Koppe T, Wang D, Andreu T, Chen G, Vetter U, Morante JR, Schaaf P (2014) Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J Mater Chem A 2(32):12708–12716CrossRef Yan Y, Han M, Konkin A, Koppe T, Wang D, Andreu T, Chen G, Vetter U, Morante JR, Schaaf P (2014) Slightly hydrogenated TiO2 with enhanced photocatalytic performance. J Mater Chem A 2(32):12708–12716CrossRef
22.
go back to reference Zhang D, Yang M, Dong S (2015) Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J Phys Chem C 119(3):1451–1456CrossRef Zhang D, Yang M, Dong S (2015) Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J Phys Chem C 119(3):1451–1456CrossRef
23.
go back to reference Nadeem IM, Treacy JP, Selcuk S, Torrelles X, Hussain H, Wilson A, Grinter DC, Cabailh G, Bikondoa O, Nicklin C et al (2018) Water dissociates at the aqueous interface with reduced anatase TiO2 (101). J Phys Chem Lett 9(11):3131–3136PubMedPubMedCentralCrossRef Nadeem IM, Treacy JP, Selcuk S, Torrelles X, Hussain H, Wilson A, Grinter DC, Cabailh G, Bikondoa O, Nicklin C et al (2018) Water dissociates at the aqueous interface with reduced anatase TiO2 (101). J Phys Chem Lett 9(11):3131–3136PubMedPubMedCentralCrossRef
24.
go back to reference Liu L, Wang Z, Pan C, Xiao W, Cho K (2013) Effect of hydrogen on O2 adsorption and dissociation on a TiO2 anatase (001) surface. ChemPhysChem 14(5):996–1002PubMedCrossRef Liu L, Wang Z, Pan C, Xiao W, Cho K (2013) Effect of hydrogen on O2 adsorption and dissociation on a TiO2 anatase (001) surface. ChemPhysChem 14(5):996–1002PubMedCrossRef
25.
go back to reference Aschauer U, Selloni A (2012) Hydrogen interaction with the anatase TiO2 (101) surface. Phys Chem Chem Phys 14(48):16595–16602PubMedCrossRef Aschauer U, Selloni A (2012) Hydrogen interaction with the anatase TiO2 (101) surface. Phys Chem Chem Phys 14(48):16595–16602PubMedCrossRef
26.
go back to reference Islam MM, Calatayud M, Pacchioni G (2011) Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation. J Phys Chem C 115(14):6809–6814CrossRef Islam MM, Calatayud M, Pacchioni G (2011) Hydrogen adsorption and diffusion on the anatase TiO2 (101) surface: a first-principles investigation. J Phys Chem C 115(14):6809–6814CrossRef
27.
go back to reference Calatayud M, Minot C (2004) Effect of relaxation on structure and reactivity of anatase (1 0 0) and (0 0 1) surfaces. Surf Sci 552(1–3):169–179 Calatayud M, Minot C (2004) Effect of relaxation on structure and reactivity of anatase (1 0 0) and (0 0 1) surfaces. Surf Sci 552(1–3):169–179
28.
go back to reference Lei M, Coh S (2020) Hydrogen plasma favored modification of anatase TiO2 (001) surface with desirable water splitting performance. Phys Rev Mater 4(7):075801CrossRef Lei M, Coh S (2020) Hydrogen plasma favored modification of anatase TiO2 (001) surface with desirable water splitting performance. Phys Rev Mater 4(7):075801CrossRef
29.
go back to reference Enevoldsen GH, Pinto HP, Foster AS, Jensen MC, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO2. Phys Rev Lett 102(13):136103PubMedCrossRef Enevoldsen GH, Pinto HP, Foster AS, Jensen MC, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F (2009) Imaging of the hydrogen subsurface site in rutile TiO2. Phys Rev Lett 102(13):136103PubMedCrossRef
30.
go back to reference Lu Y, Yin W-J, Peng K-L, Wang K, Hu Q, Selloni A, Chen F-R, Liu L-M, Sui M-L (2018) Self-hydrogenated shell promoting photo-catalytic H2 evolution on anatase TiO2. Nat Commun 9(1):1–9CrossRef Lu Y, Yin W-J, Peng K-L, Wang K, Hu Q, Selloni A, Chen F-R, Liu L-M, Sui M-L (2018) Self-hydrogenated shell promoting photo-catalytic H2 evolution on anatase TiO2. Nat Commun 9(1):1–9CrossRef
31.
go back to reference Ohashi Y, Nagatsuka N, Ogura S, Fukutani K (2019) Hydrogen distribution and electronic structure of TiO2 (110) hydrogenated with low-energy hydrogen ions. J Phys Chem C 123(16):10319–10324CrossRef Ohashi Y, Nagatsuka N, Ogura S, Fukutani K (2019) Hydrogen distribution and electronic structure of TiO2 (110) hydrogenated with low-energy hydrogen ions. J Phys Chem C 123(16):10319–10324CrossRef
32.
go back to reference Nagatsuka N, Wilde M, Fukutani K (2020) Hydrogenation and hydrogen diffusion at the anatase TiO2 (101) surface. J Chem Phys 152(7):074708PubMedCrossRef Nagatsuka N, Wilde M, Fukutani K (2020) Hydrogenation and hydrogen diffusion at the anatase TiO2 (101) surface. J Chem Phys 152(7):074708PubMedCrossRef
33.
go back to reference Morris Hotsenpiller P, Bolt J, Farneth W, Lowekamp J, Rohrer G (1998) Orientation dependence of photochemical reactions on TiO2 surfaces. J Phys Chem B 102(17):3216–3226CrossRef Morris Hotsenpiller P, Bolt J, Farneth W, Lowekamp J, Rohrer G (1998) Orientation dependence of photochemical reactions on TiO2 surfaces. J Phys Chem B 102(17):3216–3226CrossRef
34.
go back to reference Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M (2009) Photocatalytic degradation of methyl orange over single crystalline zno: orientation dependence of photoactivity and photostability of Zno. Langmuir 25(5):3310–3315PubMedCrossRef Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M (2009) Photocatalytic degradation of methyl orange over single crystalline zno: orientation dependence of photoactivity and photostability of Zno. Langmuir 25(5):3310–3315PubMedCrossRef
35.
go back to reference Kyriakou G, Davidson ER, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes ECH (2014) Significant quantum effects in hydrogen activation. ACS Nano 8(5):4827–4835PubMedPubMedCentralCrossRef Kyriakou G, Davidson ER, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes ECH (2014) Significant quantum effects in hydrogen activation. ACS Nano 8(5):4827–4835PubMedPubMedCentralCrossRef
36.
go back to reference Walle, L., Borg, A., Uvdal, P., Sandell, A.: Probing the influence from residual ti interstitials on water adsorption on TiO2 (110). Physical Review B 86(20), 205415 (2012) Walle, L., Borg, A., Uvdal, P., Sandell, A.: Probing the influence from residual ti interstitials on water adsorption on TiO2 (110). Physical Review B 86(20), 205415 (2012)
37.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865PubMedCrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865PubMedCrossRef
38.
39.
go back to reference Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558CrossRef
40.
go back to reference Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Electron energy loss spectra and the structural stability of nickel oxide: An lsda+ u study. Phys Rev B 57(3):1505CrossRef Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Electron energy loss spectra and the structural stability of nickel oxide: An lsda+ u study. Phys Rev B 57(3):1505CrossRef
41.
go back to reference Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO2: comparison of standard gga, gga+ u, and hybrid dft calculations. J Chem Phys 129(15):54113CrossRef Finazzi E, Di Valentin C, Pacchioni G, Selloni A (2008) Excess electron states in reduced bulk anatase TiO2: comparison of standard gga, gga+ u, and hybrid dft calculations. J Chem Phys 129(15):54113CrossRef
42.
go back to reference van de Walle A, Ceder G (2002) Automating first-principles phase diagram calculations. J Phase Equilib 23(4):348–359CrossRef van de Walle A, Ceder G (2002) Automating first-principles phase diagram calculations. J Phase Equilib 23(4):348–359CrossRef
43.
go back to reference Suzuki S, Fukui K-I, Onishi H, Iwasawa Y (2000) Hydrogen adatoms on TiO2 (110)-(1◊1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys Rev Lett 84(10):2156PubMedCrossRef Suzuki S, Fukui K-I, Onishi H, Iwasawa Y (2000) Hydrogen adatoms on TiO2 (110)-(1◊1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys Rev Lett 84(10):2156PubMedCrossRef
44.
go back to reference Kunat M, Burghaus U, Wöll C (2004) The adsorption of hydrogen on the rutile TiO2 (110) surface. Phys Chem Chem Phys 6(16):4203–4207CrossRef Kunat M, Burghaus U, Wöll C (2004) The adsorption of hydrogen on the rutile TiO2 (110) surface. Phys Chem Chem Phys 6(16):4203–4207CrossRef
45.
go back to reference Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985CrossRef Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985CrossRef
46.
go back to reference Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022CrossRef Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022CrossRef
47.
go back to reference Calatayud M, Yin X-L, Qiu H, Wang Y, Birkner A, Minot C, Wöll C (2010) Comment on imaging of the hydrogen subsurface site in rutile TiO2. Phys Rev Lett 104(11):119603PubMedCrossRef Calatayud M, Yin X-L, Qiu H, Wang Y, Birkner A, Minot C, Wöll C (2010) Comment on imaging of the hydrogen subsurface site in rutile TiO2. Phys Rev Lett 104(11):119603PubMedCrossRef
48.
go back to reference Panayotov DA, Yates JT Jr (2007) n-type doping of TiO2 with atomic hydrogen-observation of the production of conduction band electrons by infrared spectroscopy. Chem Phys Lett 436(1–3):204–208CrossRef Panayotov DA, Yates JT Jr (2007) n-type doping of TiO2 with atomic hydrogen-observation of the production of conduction band electrons by infrared spectroscopy. Chem Phys Lett 436(1–3):204–208CrossRef
49.
go back to reference Deskins NA, Rousseau R, Dupuis M (2009) Localized electronic states from surface hydroxyls and polarons in TiO2 (110). J Phys Chem C 113(33):14583–14586CrossRef Deskins NA, Rousseau R, Dupuis M (2009) Localized electronic states from surface hydroxyls and polarons in TiO2 (110). J Phys Chem C 113(33):14583–14586CrossRef
50.
go back to reference Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys Rev Lett 97(16):166803PubMedCrossRef Di Valentin C, Pacchioni G, Selloni A (2006) Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys Rev Lett 97(16):166803PubMedCrossRef
51.
go back to reference Krüger P, Jupille J, Bourgeois S, Domenichini B, Verdini A, Floreano L, Morgante A (2012) Intrinsic nature of the excess electron distribution at the TiO2 (110) surface. Phys Rev Lett 108(12):126803PubMedCrossRef Krüger P, Jupille J, Bourgeois S, Domenichini B, Verdini A, Floreano L, Morgante A (2012) Intrinsic nature of the excess electron distribution at the TiO2 (110) surface. Phys Rev Lett 108(12):126803PubMedCrossRef
Metadata
Title
The Subsurface Diffusion of Hydrogen on Rutile TiO2 Surfaces: A Periodic DFT Study
Authors
Baohuan Wei
Monica Calatayud
Publication date
28-10-2021
Publisher
Springer US
Published in
Topics in Catalysis / Issue 1-4/2022
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-021-01518-w

Other articles of this Issue 1-4/2022

Topics in Catalysis 1-4/2022 Go to the issue

Premium Partners