Skip to main content
Top

2017 | OriginalPaper | Chapter

RETRACTED CHAPTER: The Summary of Underwater Gliders Control Strategies

Authors : Yuhai Liu, Xin Luan, Dalei Song, Zhiqiang Su

Published in: Intelligent Robotics and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The underwater glider is a new type of system that combines buoy technology and underwater robotics technology. By changing the net buoyancy as a driving force and changing its own center of gravity position, the attitude angle can be changed. Many advantages, such as gliding with high efficiency, wide cruise range, less power consumption, low noise, and no pollution, make the underwater glider an important platform for marine environment observation and ocean resource exploration. In this paper, control strategies for existing underwater gliders are reviewed. A total of 51 papers indexed by Scopus with keywords control and underwater gliders were reviewed from 1989 to 2016. The majority of gliders use classical controllers, which cannot dynamically compensate for un-modeled hydrodynamic forces and unknown variations in water current and wind. With increasing operational depths and larger payloads, control strategies will become an increasingly important aspect for these gliders. Control strategies implemented in underwater gliders were reviewed and alternative control strategies are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leonard, N.E., Graver, J.G.: Model-based feedback control of autonomous underwater gliders. IEEE J. Oceanic Eng. 26, 633–645 (2001)CrossRef Leonard, N.E., Graver, J.G.: Model-based feedback control of autonomous underwater gliders. IEEE J. Oceanic Eng. 26, 633–645 (2001)CrossRef
2.
go back to reference Griffiths, G., Jones, C., Ferguson, J., Bose, N.: Undersea gliders. J. Ocean Technol. 2, 64–75 (2007) Griffiths, G., Jones, C., Ferguson, J., Bose, N.: Undersea gliders. J. Ocean Technol. 2, 64–75 (2007)
3.
go back to reference Woolsey, C., Leonard, N.: Moving mass control for underwater vehicles. In: Proceedings of the 2002 American Control Conference, pp. 2824–2829 (2002) Woolsey, C., Leonard, N.: Moving mass control for underwater vehicles. In: Proceedings of the 2002 American Control Conference, pp. 2824–2829 (2002)
4.
go back to reference Fan, S.-S., Yang, C.-J., Peng, S.-L., Li, K.-H., Xie, Y., Zhang, S.-Y.: Underwater glider design based on dynamic model analysis and prototype development. J. Zhejiang Univ. Sci. 2013, 07–12 (2013) Fan, S.-S., Yang, C.-J., Peng, S.-L., Li, K.-H., Xie, Y., Zhang, S.-Y.: Underwater glider design based on dynamic model analysis and prototype development. J. Zhejiang Univ. Sci. 2013, 07–12 (2013)
5.
go back to reference Rudnick, D.L., Davis, R.E., Eriksen, C.C., Fratantoni, D.M., Perry, M.J.: Underwater gliders for ocean research. Marine Technol. Soc. J. 38, 73–84 (2004)CrossRef Rudnick, D.L., Davis, R.E., Eriksen, C.C., Fratantoni, D.M., Perry, M.J.: Underwater gliders for ocean research. Marine Technol. Soc. J. 38, 73–84 (2004)CrossRef
6.
go back to reference Javaid, M.Y., Ovinis, M., Nagarajan, T., Hashim, F.B.: Underwater gliders: a review. In: MATEC Web of Conferences, p. 02020 (2014) Javaid, M.Y., Ovinis, M., Nagarajan, T., Hashim, F.B.: Underwater gliders: a review. In: MATEC Web of Conferences, p. 02020 (2014)
7.
go back to reference Arima, M., Ichihashi, N., Miwa, Y.: Modelling and motion simulation of an underwater glider with independently controllable main wings. In: OCEANS 2009-EUROPE, pp. 1–6 (2009) Arima, M., Ichihashi, N., Miwa, Y.: Modelling and motion simulation of an underwater glider with independently controllable main wings. In: OCEANS 2009-EUROPE, pp. 1–6 (2009)
8.
go back to reference Wood, S.: Autonomous underwater gliders. Underwater Vehicles, pp. 499–524 (2009) Wood, S.: Autonomous underwater gliders. Underwater Vehicles, pp. 499–524 (2009)
9.
go back to reference Mahmoudian, N.: Efficient motion planning and control for underwater gliders. Virginia Polytechnic Institute and State University (2009) Mahmoudian, N.: Efficient motion planning and control for underwater gliders. Virginia Polytechnic Institute and State University (2009)
10.
go back to reference Isa, K., Arshad, M.R.: Motion simulation for propeller-driven USM underwater glider with controllable wings and rudder. In: 2011 2nd International Conference on Instrumentation Control and Automation (ICA), pp. 316–321 (2011) Isa, K., Arshad, M.R.: Motion simulation for propeller-driven USM underwater glider with controllable wings and rudder. In: 2011 2nd International Conference on Instrumentation Control and Automation (ICA), pp. 316–321 (2011)
11.
go back to reference Yang, H., Ma, J.: Nonlinear feedforward and feedback control design for autonomous underwater glider. J. Shanghai Jiaotong Univ. (Sci.) 16, 11–16 (2011)CrossRefMATH Yang, H., Ma, J.: Nonlinear feedforward and feedback control design for autonomous underwater glider. J. Shanghai Jiaotong Univ. (Sci.) 16, 11–16 (2011)CrossRefMATH
12.
go back to reference Isa, K., Arshad, M.: Modeling and motion control of a hybriddriven underwater glider. IJMS 42, 971–979 (2013) Isa, K., Arshad, M.: Modeling and motion control of a hybriddriven underwater glider. IJMS 42, 971–979 (2013)
13.
go back to reference Zhang, F., Tan, X., Khalil, H.K.: Passivity-based controller design for stablization of underwater gliders. In: American Control Conference (ACC), pp. 5408–5413 (2012) Zhang, F., Tan, X., Khalil, H.K.: Passivity-based controller design for stablization of underwater gliders. In: American Control Conference (ACC), pp. 5408–5413 (2012)
14.
go back to reference Claus, B.R., Bachmayer, Cooney, L.: Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, pp. 1–6 (2012) Claus, B.R., Bachmayer, Cooney, L.: Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider. In: Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, pp. 1–6 (2012)
15.
go back to reference Leighton, J.: System design of an unmanned aerial vehicle (UAV) for marine environmental sensing. Massachusetts Institute of Technology (2013) Leighton, J.: System design of an unmanned aerial vehicle (UAV) for marine environmental sensing. Massachusetts Institute of Technology (2013)
16.
go back to reference Panish, R.: Dynamic control capabilities and developments of the Bluefin robotics AUV fleet. In: Proceedings of the International Symposium on Unmanned Untethered Submersible Technology (UUST), pp. 23–26, August 2009 Panish, R.: Dynamic control capabilities and developments of the Bluefin robotics AUV fleet. In: Proceedings of the International Symposium on Unmanned Untethered Submersible Technology (UUST), pp. 23–26, August 2009
17.
go back to reference Yu, J.-C., Zhang, A.-Q., Jin, W.-M., Chen, Q., Tian, Y., Liu, C.-J.: Development and experiments of the Sea-Wing underwater glider. China Ocean Eng. 25, 721–736 (2011)CrossRef Yu, J.-C., Zhang, A.-Q., Jin, W.-M., Chen, Q., Tian, Y., Liu, C.-J.: Development and experiments of the Sea-Wing underwater glider. China Ocean Eng. 25, 721–736 (2011)CrossRef
18.
go back to reference Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., et al.: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26, 424–436 (2001)CrossRef Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., Lehman, T.W., Sabin, P.L., et al.: Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26, 424–436 (2001)CrossRef
19.
go back to reference Isa, K., Arshad, M.R.: Neural network control of buoyancy-driven autonomous underwater glider. In: Sen, G.G., Bailey, D., Demidenko, S., Carnegie, D. (eds.) Recent Advances in Robotics and Automation. Studies in Computational Intelligence, vol. 480, pp. 15–35. Springer, Berlin (2013). doi:10.1007/978-3-642-37387-9_2 CrossRef Isa, K., Arshad, M.R.: Neural network control of buoyancy-driven autonomous underwater glider. In: Sen, G.G., Bailey, D., Demidenko, S., Carnegie, D. (eds.) Recent Advances in Robotics and Automation. Studies in Computational Intelligence, vol. 480, pp. 15–35. Springer, Berlin (2013). doi:10.​1007/​978-3-642-37387-9_​2 CrossRef
20.
go back to reference Zhang, F., Tan, X.: Passivity-based Stabilization of Underwater Gliders with a Control Surface. J. Dyn. Syst. Meas. Control (2014) Zhang, F., Tan, X.: Passivity-based Stabilization of Underwater Gliders with a Control Surface. J. Dyn. Syst. Meas. Control (2014)
21.
go back to reference Naeem, W.: Model predictive control of an autonomous underwater vehicle. In: Proceedings of UKACC 2002 Postgraduate Symposium, Sheffield, UK, September, pp. 19–23 (2002) Naeem, W.: Model predictive control of an autonomous underwater vehicle. In: Proceedings of UKACC 2002 Postgraduate Symposium, Sheffield, UK, September, pp. 19–23 (2002)
22.
go back to reference Webb, D.C., Simonetti, P.J., Jones, C.P.: SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Oceanic Eng. 26, 447–452 (2001)CrossRef Webb, D.C., Simonetti, P.J., Jones, C.P.: SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Oceanic Eng. 26, 447–452 (2001)CrossRef
23.
go back to reference Sherman, J., Davis, R., Owens, W., Valdes, J.: The autonomous underwater glider Spray. IEEE J. Oceanic Eng. 26, 437–446 (2001)CrossRef Sherman, J., Davis, R., Owens, W., Valdes, J.: The autonomous underwater glider Spray. IEEE J. Oceanic Eng. 26, 437–446 (2001)CrossRef
24.
go back to reference Bhatta, P., Leonard, N.E.: Stabilization and coordination of underwater gliders. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 2081–2086 (2002) Bhatta, P., Leonard, N.E.: Stabilization and coordination of underwater gliders. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 2081–2086 (2002)
25.
go back to reference Noh, M.M., Arshad, M.R., Mokhtar, R.M.: Depth and pitch control of USM underwater glider: performance comparison PID vs LQR. Indian J. Geo-Mar. Sci. 40, 200–206 (2011) Noh, M.M., Arshad, M.R., Mokhtar, R.M.: Depth and pitch control of USM underwater glider: performance comparison PID vs LQR. Indian J. Geo-Mar. Sci. 40, 200–206 (2011)
26.
go back to reference Graver, J.G.: Underwater gliders: Dynamics, control and design. Citeseer (2005) Graver, J.G.: Underwater gliders: Dynamics, control and design. Citeseer (2005)
27.
go back to reference Yang, H., Ma, J.: Sliding mode tracking control of an autonomous underwater glider. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), pp. V4-555–V4-558 (2010) Yang, H., Ma, J.: Sliding mode tracking control of an autonomous underwater glider. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), pp. V4-555–V4-558 (2010)
28.
go back to reference Song, F., Smith, S.M.: Combine sliding mode control and fuzzy logic control for autonomous underwater vehicles. In: Bai, Y., Zhuang, H., Wang, D. (eds.) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control, pp. 191–205. Springer, London (2006). doi:10.1007/978-1-84628-469-4_13 CrossRef Song, F., Smith, S.M.: Combine sliding mode control and fuzzy logic control for autonomous underwater vehicles. In: Bai, Y., Zhuang, H., Wang, D. (eds.) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control, pp. 191–205. Springer, London (2006). doi:10.​1007/​978-1-84628-469-4_​13 CrossRef
29.
go back to reference Dong, E., Guo, S., Lin, X., Li, X., Wang, Y.: A neural networkbased self-tuning PID controller of an autonomous underwater vehicle. In: 2012 International Conference on Mechatronics and Automation (ICMA), pp. 898–903 (2012) Dong, E., Guo, S., Lin, X., Li, X., Wang, Y.: A neural networkbased self-tuning PID controller of an autonomous underwater vehicle. In: 2012 International Conference on Mechatronics and Automation (ICMA), pp. 898–903 (2012)
30.
go back to reference Loc, M.B., Choi, H.-S., Kim, J.-Y., Kim, Y.-H., Murakami, R.-I.: Design of Fuzzy PD Depth Controller for an AUV (2013) Loc, M.B., Choi, H.-S., Kim, J.-Y., Kim, Y.-H., Murakami, R.-I.: Design of Fuzzy PD Depth Controller for an AUV (2013)
31.
go back to reference Cooney, L.A.: Dynamic response and maneuvering strategies of a hybrid autonomous underwater vehicle in hovering. DTIC Document (2009) Cooney, L.A.: Dynamic response and maneuvering strategies of a hybrid autonomous underwater vehicle in hovering. DTIC Document (2009)
32.
go back to reference Steenson, L.V., Turnock, S., Phillips, A., Furlong, M.E., Harris, C., Rogers, E., et al.: Model predictive control of a hybrid autonomous underwater vehicle with experimental verification. In: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, p. 1475090213506185, (2014) Steenson, L.V., Turnock, S., Phillips, A., Furlong, M.E., Harris, C., Rogers, E., et al.: Model predictive control of a hybrid autonomous underwater vehicle with experimental verification. In: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, p. 1475090213506185, (2014)
33.
go back to reference Bender, A., Steinberg, D.M., Friedman, A.L., Williams, S.B.: Analysis of an autonomous underwater glider. In: Proceedings of the Australasian Conference on Robotics and Automation, p. 110 (2008) Bender, A., Steinberg, D.M., Friedman, A.L., Williams, S.B.: Analysis of an autonomous underwater glider. In: Proceedings of the Australasian Conference on Robotics and Automation, p. 110 (2008)
34.
go back to reference Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56, 670–677 (2008)CrossRef Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56, 670–677 (2008)CrossRef
35.
go back to reference Goheen, K.R., Jefferys, E.R.: Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE J. Oceanic Eng. 15, 144–151 (1990)CrossRef Goheen, K.R., Jefferys, E.R.: Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE J. Oceanic Eng. 15, 144–151 (1990)CrossRef
36.
go back to reference Nag, A., Patel, S.S., Akbar, S.: Fuzzy logic based depth control of an autonomous underwater vehicle. In: 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4 s), pp. 117–123 (2013) Nag, A., Patel, S.S., Akbar, S.: Fuzzy logic based depth control of an autonomous underwater vehicle. In: 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4 s), pp. 117–123 (2013)
37.
go back to reference Shan, Y., Yan, Z., Wang, J.: Model predictive control of underwater gliders based on a one-layer recurrent neural network. In: 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI), pp. 328–333 (2013) Shan, Y., Yan, Z., Wang, J.: Model predictive control of underwater gliders based on a one-layer recurrent neural network. In: 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI), pp. 328–333 (2013)
38.
go back to reference Sebastián, E.: Adaptive fuzzy sliding mode controller for the snorkel underwater vehicle. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, John C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 855–866. Springer, Heidelberg (2006). doi:10.1007/11840541_70 CrossRef Sebastián, E.: Adaptive fuzzy sliding mode controller for the snorkel underwater vehicle. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, John C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 855–866. Springer, Heidelberg (2006). doi:10.​1007/​11840541_​70 CrossRef
39.
go back to reference Song, F., Smith, S.M.: Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: Oceans 2000 MTS/IEEE Conference and Exhibition, pp. 835–840 (2000) Song, F., Smith, S.M.: Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: Oceans 2000 MTS/IEEE Conference and Exhibition, pp. 835–840 (2000)
40.
go back to reference Sebastián, E., Sotelo, M.A.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Rob. Syst. 49, 189215 (2007)CrossRef Sebastián, E., Sotelo, M.A.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Rob. Syst. 49, 189215 (2007)CrossRef
41.
go back to reference Graver, J.G., Bachmayer, R., Leonard, N.E., Fratantoni, D.M.: Underwater glider model parameter identification. In: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (2003) Graver, J.G., Bachmayer, R., Leonard, N.E., Fratantoni, D.M.: Underwater glider model parameter identification. In: Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology (2003)
42.
go back to reference Isa, K., Arshad, M.: Buoyancy-driven underwater glider modelling and analysis of motion control. Indian J. Geo-Mar. Sci. 41, 516–526 (2012) Isa, K., Arshad, M.: Buoyancy-driven underwater glider modelling and analysis of motion control. Indian J. Geo-Mar. Sci. 41, 516–526 (2012)
43.
go back to reference Gonzalez, L.A.: Design, modelling and control of an autonomous underwater vehicle. BE Thesis, The University of Western Australia, Australia (2004) Gonzalez, L.A.: Design, modelling and control of an autonomous underwater vehicle. BE Thesis, The University of Western Australia, Australia (2004)
44.
go back to reference Mahmoudian, N., Woolsey, C.: Underwater glider motion control. In: 47th IEEE Conference on Decision and Control. CDC 2008, pp. 552–557 (2008) Mahmoudian, N., Woolsey, C.: Underwater glider motion control. In: 47th IEEE Conference on Decision and Control. CDC 2008, pp. 552–557 (2008)
45.
go back to reference Sliwka, J., Clement, B., Probst, I.: Sea glider guidance around a circle using distance measurements to a drifting acoustic source. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 94–99 (2012) Sliwka, J., Clement, B., Probst, I.: Sea glider guidance around a circle using distance measurements to a drifting acoustic source. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 94–99 (2012)
46.
go back to reference Kan, L., Zhang, Y., Fan, H., Yang, W., Chen, Z.: MATLAB-based simulation of buoyancy-driven underwater glider motion. J. Ocean Univ. Chin. 7, 113–118 (2008)CrossRef Kan, L., Zhang, Y., Fan, H., Yang, W., Chen, Z.: MATLAB-based simulation of buoyancy-driven underwater glider motion. J. Ocean Univ. Chin. 7, 113–118 (2008)CrossRef
47.
go back to reference Graver, J.G., Leonard, N.E.: Underwater glider dynamics and control. In: 12th International Symposium on Unmanned Untethered Submersible Technology, pp. 1742–1710 (2001) Graver, J.G., Leonard, N.E.: Underwater glider dynamics and control. In: 12th International Symposium on Unmanned Untethered Submersible Technology, pp. 1742–1710 (2001)
48.
go back to reference Azis, F., Aras, M., Rashid, M., Othman, M., Abdullah, S.: Problem identification for underwater Remotely Operated Vehicle (ROV): a case study. Procedia Eng. 41, 554–560 (2012)CrossRef Azis, F., Aras, M., Rashid, M., Othman, M., Abdullah, S.: Problem identification for underwater Remotely Operated Vehicle (ROV): a case study. Procedia Eng. 41, 554–560 (2012)CrossRef
49.
go back to reference Zhang, F., Tan, X.: Nonlinear observer design for stabilization of gliding robotic fish. In: American Control Conference (ACC), pp. 4715–4720 (2014) Zhang, F., Tan, X.: Nonlinear observer design for stabilization of gliding robotic fish. In: American Control Conference (ACC), pp. 4715–4720 (2014)
50.
go back to reference Fan, S., Woolsey, C.A.: Dynamics of underwater gliders in current. Ocean Eng. 84, 249–258 (2014)CrossRef Fan, S., Woolsey, C.A.: Dynamics of underwater gliders in current. Ocean Eng. 84, 249–258 (2014)CrossRef
51.
go back to reference Liu, Y.-H., Su, Z.-Q., Luan, X., Song, D.-L., Han, L.: Motion analysis and fuzzy-PID control algorithm designing for the pitch angle of an underwater glider. J. Math. Comput. Sci. 17, 133–147 (2017)CrossRef Liu, Y.-H., Su, Z.-Q., Luan, X., Song, D.-L., Han, L.: Motion analysis and fuzzy-PID control algorithm designing for the pitch angle of an underwater glider. J. Math. Comput. Sci. 17, 133–147 (2017)CrossRef
Metadata
Title
RETRACTED CHAPTER: The Summary of Underwater Gliders Control Strategies
Authors
Yuhai Liu
Xin Luan
Dalei Song
Zhiqiang Su
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-65289-4_75

Premium Partner