Skip to main content
Top

2010 | OriginalPaper | Chapter

4. The Variety of Channels

Authors : G. Bard Ermentrout, David H. Terman

Published in: Mathematical Foundations of Neuroscience

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We have discussed several types of active (voltage-gated) channels for specific neuron models. The Hodgkin–Huxley model for the squid axon consisted of three different ion channels: a passive leak, a transient sodium channel, and the delayed rectifier potassium channel. Similarly, the Morris–Lecar model has a delayed rectifier and a simple calcium channel (with no dynamics). Hodgkin and Huxley were smart and supremely lucky that they used the squid axon as a model to analyze the action potential, as it turns out that most neurons have dozens of different ion channels. In this chapter, we briefly describe a number of them, provide some instances of their formulas, and describe how they influence a cell’s firing properties. The reader who is interested in finding out about other channels and other models for the channels described here should consult http://senselab.med.yale.edu/modeldb/default.asp, which is a database for neural models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
22.
go back to reference R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol., 94:3637–3642, 2005.CrossRef R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol., 94:3637–3642, 2005.CrossRef
31.
go back to reference R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Btzinger complex. II. Populations Of coupled pacemaker neurons. J. Neurophysiol., 82:398–415, 1999. R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Btzinger complex. II. Populations Of coupled pacemaker neurons. J. Neurophysiol., 82:398–415, 1999.
33.
go back to reference N. Carnevale and M. Hines. The NEURON Book. Cambridge University Press, Cambridge, UK, 2006.CrossRef N. Carnevale and M. Hines. The NEURON Book. Cambridge University Press, Cambridge, UK, 2006.CrossRef
45.
go back to reference J. A. Connor and C. F. Stevens. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.), 213:31–53, 1971. J. A. Connor and C. F. Stevens. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.), 213:31–53, 1971.
55.
go back to reference C. A. Del Negro, N. Koshiya, R. J. Butera, and J. C. Smith. Persistent sodium current, membrane properties and bursting behavior of pre-btzinger complex inspiratory neurons in vitro. J. Neurophysiol., 88:2242–2250, 2002.CrossRef C. A. Del Negro, N. Koshiya, R. J. Butera, and J. C. Smith. Persistent sodium current, membrane properties and bursting behavior of pre-btzinger complex inspiratory neurons in vitro. J. Neurophysiol., 88:2242–2250, 2002.CrossRef
57.
go back to reference A. Destexhe and D. Paré. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81:1531–1547, 1999. A. Destexhe and D. Paré. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81:1531–1547, 1999.
58.
go back to reference A. Destexhe, A. Babloyantz, and T. J. Sejnowski. Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys. J., 65:1538–1552, 1993.CrossRef A. Destexhe, A. Babloyantz, and T. J. Sejnowski. Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys. J., 65:1538–1552, 1993.CrossRef
59.
go back to reference A. Destexhe, D. A. McCormick, and T. J. Sejnowski. A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys. J., 65:2473–2477, 1993.CrossRef A. Destexhe, D. A. McCormick, and T. J. Sejnowski. A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys. J., 65:2473–2477, 1993.CrossRef
60.
go back to reference A. Destexhe and A. Babloyantz. Pacemaker-induced coherence in cortical networks. Neural Comput., 3:145–154, Dec 1991.CrossRef A. Destexhe and A. Babloyantz. Pacemaker-induced coherence in cortical networks. Neural Comput., 3:145–154, Dec 1991.CrossRef
63.
go back to reference O. Diekmann. On a nonlinear integral equation arising in mathematical epidemiology. In W. Eckhaus and E. M. de Jager, editors, Differential Equations and Applications (Proceedings of Third Scheveningen Conference, Scheveningen, 1977), volume 31 of North-Holland Mathematical Studies, pages 133–140. North-Holland, Amsterdam, 1978.CrossRef O. Diekmann. On a nonlinear integral equation arising in mathematical epidemiology. In W. Eckhaus and E. M. de Jager, editors, Differential Equations and Applications (Proceedings of Third Scheveningen Conference, Scheveningen, 1977), volume 31 of North-Holland Mathematical Studies, pages 133–140. North-Holland, Amsterdam, 1978.CrossRef
67.
go back to reference B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8:979–1001, 1996.CrossRef B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8:979–1001, 1996.CrossRef
83.
go back to reference C. P. Fall, E. Marland, J. M. Wagner, and J. J. Tyson. Computational Cell Biology. Springer, New York, 2002.MATH C. P. Fall, E. Marland, J. M. Wagner, and J. J. Tyson. Computational Cell Biology. Springer, New York, 2002.MATH
109.
go back to reference S. Grillner and P. Wallén. Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res. Brain Res. Rev., 40:92–106, 2002.CrossRef S. Grillner and P. Wallén. Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res. Brain Res. Rev., 40:92–106, 2002.CrossRef
114.
go back to reference B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes. Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiol., 94:1623–1635, 2005.CrossRef B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes. Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiol., 94:1623–1635, 2005.CrossRef
118.
go back to reference S. P. Hastings. On the existence of homoclinic and paeriodic orbits for the fitzhugh-naguo equations. Quart. J. Math. Oxford, 27:123–124, 1976.MathSciNetMATHCrossRef S. P. Hastings. On the existence of homoclinic and paeriodic orbits for the fitzhugh-naguo equations. Quart. J. Math. Oxford, 27:123–124, 1976.MathSciNetMATHCrossRef
129.
go back to reference R. B. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge, 2006.MATHCrossRef R. B. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge, 2006.MATHCrossRef
132.
134.
go back to reference E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.CrossRef E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.CrossRef
138.
go back to reference C. E. Jahr and C. F. Stevens. A quantitative description of NMDA receptor-channel kinetic behavior. J. Neurosci., 10:1830–1837, 1990. C. E. Jahr and C. F. Stevens. A quantitative description of NMDA receptor-channel kinetic behavior. J. Neurosci., 10:1830–1837, 1990.
181.
go back to reference B. Lindner, A. Longtin, and A. Bulsara. Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise. Neural Comput., 15:1760–1787, 2003.CrossRef B. Lindner, A. Longtin, and A. Bulsara. Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise. Neural Comput., 15:1760–1787, 2003.CrossRef
183.
go back to reference A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci., 13:111–124, 2002.CrossRef A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci., 13:111–124, 2002.CrossRef
233.
go back to reference J. Ritt. Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 68:041915, Oct 2003.MathSciNetCrossRef J. Ritt. Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 68:041915, Oct 2003.MathSciNetCrossRef
234.
go back to reference R. Rodriguez and H. C. Tuckwell. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 54:5585–5590, 1996.CrossRef R. Rodriguez and H. C. Tuckwell. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 54:5585–5590, 1996.CrossRef
261.
go back to reference J. N. Teramae and D. Tanaka. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett., 93:204103, 2004.CrossRef J. N. Teramae and D. Tanaka. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett., 93:204103, 2004.CrossRef
262.
269.
go back to reference R. Traub and R. Miles. Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge, 1991.CrossRef R. Traub and R. Miles. Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge, 1991.CrossRef
274.
go back to reference H. C. Tuckwell. Introduction to Theoretical Neurobiology. Vol. 2, Nonlinear and Stochastic Theories, volume 8 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, 1988. H. C. Tuckwell. Introduction to Theoretical Neurobiology. Vol. 2, Nonlinear and Stochastic Theories, volume 8 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, 1988.
30.
go back to reference R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82:382–397, 1999. R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82:382–397, 1999.
156.
go back to reference C. Koch. Biophysics of Computation. Oxford University Press, London and New York, 1999. C. Koch. Biophysics of Computation. Oxford University Press, London and New York, 1999.
199.
go back to reference R. W. Meech and G. O. Mackie. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale. J. Neurophysiol., 69:884–893, 1993. R. W. Meech and G. O. Mackie. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale. J. Neurophysiol., 69:884–893, 1993.
253.
go back to reference R. Stoop, K. Schindler, and L. A. Bunimovich. When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize. Neurosci. Res., 36:81–91, 2000.CrossRef R. Stoop, K. Schindler, and L. A. Bunimovich. When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize. Neurosci. Res., 36:81–91, 2000.CrossRef
92.
go back to reference R. F. Fox and Y. n. Lu. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 49:3421–3431, 1994.CrossRef R. F. Fox and Y. n. Lu. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 49:3421–3431, 1994.CrossRef
Metadata
Title
The Variety of Channels
Authors
G. Bard Ermentrout
David H. Terman
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87708-2_4

Premium Partner