Skip to main content
Top

2015 | OriginalPaper | Chapter

2. Theoretical Modeling of Aeroheating Under Rarefied Gas Effects

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the first chapter, it has been mentioned that the utmost critical points concerning thermal protection are the stagnation point of the leading edge and the reattachment point behind a separation flow region. The wall surfaces near these points suffer from peak heat fluxes, and thus the surface temperature is relatively higher than elsewhere. These most dangerous regions are likely to be ablated first, and should be specially protected by UHTC materials. Therefore, our target is currently focused on the prediction of aeroheating performance of the typical stagnation point region, although the methodology and some conclusions are universal to an extent. In fact, we have found that the engineering theory established at the stagnation point region is also useful for analogy analysis of other regions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fay JA, Riddell FR (1958) Theory of stagnation point heat transfer in dissociated air. J Aeronaut Sci 25(2):73–85MathSciNet Fay JA, Riddell FR (1958) Theory of stagnation point heat transfer in dissociated air. J Aeronaut Sci 25(2):73–85MathSciNet
2.
go back to reference Anderson JD (2006) Hypersonic and high temperature gas dynamics, 2nd edn. AIAA Inc, RestonCrossRef Anderson JD (2006) Hypersonic and high temperature gas dynamics, 2nd edn. AIAA Inc, RestonCrossRef
3.
go back to reference Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge
4.
go back to reference Tsien H-S (1948) Engineering and engineering sciences. J Chin Inst Eng 6:1–14 Tsien H-S (1948) Engineering and engineering sciences. J Chin Inst Eng 6:1–14
5.
6.
go back to reference Matting FW (1964) General solution of the laminar compressible boundary layer in the stagnation region of blunt bodies in axisymmetric flow. NASA Technical Note, D-2234 Matting FW (1964) General solution of the laminar compressible boundary layer in the stagnation region of blunt bodies in axisymmetric flow. NASA Technical Note, D-2234
7.
go back to reference Macrossan MN (2006) Scaling parameters for hypersonic flow: correlation of sphere drag data. In: 25th international symposium rarefied gas dynamics, pp 759–764 Macrossan MN (2006) Scaling parameters for hypersonic flow: correlation of sphere drag data. In: 25th international symposium rarefied gas dynamics, pp 759–764
8.
go back to reference Cheng HK (1963) The blunt-body problem in hypersonic flow at low Reynolds number. Technical report, Cornell Aeronautical Laboratory Cheng HK (1963) The blunt-body problem in hypersonic flow at low Reynolds number. Technical report, Cornell Aeronautical Laboratory
9.
go back to reference Engel CD, Praharaj SC (1983) Minnver upgrade for the AVID system. NASA Contractor Report 172212:126 (volume 1: Lanmin user’s manual) Engel CD, Praharaj SC (1983) Minnver upgrade for the AVID system. NASA Contractor Report 172212:126 (volume 1: Lanmin user’s manual)
10.
go back to reference Waldron HF (1967) Viscous hypersonic flow over pointed cones at low Reynolds numbers. AIAA J 5(2):208–218 Waldron HF (1967) Viscous hypersonic flow over pointed cones at low Reynolds numbers. AIAA J 5(2):208–218
11.
go back to reference Nomura S (1982) Correlation of hypersonic stagnation point heat transfer at low Reynolds numbers. AIAA J 21(11):1598–1600CrossRef Nomura S (1982) Correlation of hypersonic stagnation point heat transfer at low Reynolds numbers. AIAA J 21(11):1598–1600CrossRef
12.
go back to reference Artamonov AK, Arkhipov VN, Farafonov VG (1981) Dimensionless numbers in the aerodynamics of low-density gases. Fluid Dyn 16(1):110–114CrossRefMATH Artamonov AK, Arkhipov VN, Farafonov VG (1981) Dimensionless numbers in the aerodynamics of low-density gases. Fluid Dyn 16(1):110–114CrossRefMATH
13.
go back to reference Gupta RN, Simmonds AL (1986) Hypersonic low-density solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip. AIAA Paper, pp 1986–1349 Gupta RN, Simmonds AL (1986) Hypersonic low-density solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip. AIAA Paper, pp 1986–1349
14.
go back to reference Gupta Roop N, Jones Jim J, Rochelle William C (1992) Stagnation-point heat-transfer rate predictions at aeroassist flight conditions. Nasa Technical Paper 3208:19 Gupta Roop N, Jones Jim J, Rochelle William C (1992) Stagnation-point heat-transfer rate predictions at aeroassist flight conditions. Nasa Technical Paper 3208:19
15.
go back to reference Wittliff CF, Wilson MR (1961) Low-density stagnation-point heat transfer in hypersonic air flow. Technical report. Aeronautical Research Laboratory, Air Force Research Division, Air Research and Development Command, United States Air Force Wittliff CF, Wilson MR (1961) Low-density stagnation-point heat transfer in hypersonic air flow. Technical report. Aeronautical Research Laboratory, Air Force Research Division, Air Research and Development Command, United States Air Force
16.
go back to reference Riabov VV (2006) Numerical simulation of kinetic effects in low-density hypersonic aerodynamics. Rivier Acad J 2(2):17 Riabov VV (2006) Numerical simulation of kinetic effects in low-density hypersonic aerodynamics. Rivier Acad J 2(2):17
17.
go back to reference Fan J, Wu C-X, Sun Q-H, Jiang J-Z (2009) Kinetic analysis of the flow past a flat plate at moderate Reynolds numbers. Adv Mech 39:421–425 Fan J, Wu C-X, Sun Q-H, Jiang J-Z (2009) Kinetic analysis of the flow past a flat plate at moderate Reynolds numbers. Adv Mech 39:421–425
18.
go back to reference Robben F, Talbot L (1966) Measurements of shock wave thickness by the electron beam fluorescence method. Phys Fluids 9:633CrossRef Robben F, Talbot L (1966) Measurements of shock wave thickness by the electron beam fluorescence method. Phys Fluids 9:633CrossRef
19.
go back to reference Macrossan MN, Lilley CR (2003) Viscosity of argon at temperatures>2000 K from measured shock thickness. Phys Fluids 15:3452 Macrossan MN, Lilley CR (2003) Viscosity of argon at temperatures>2000 K from measured shock thickness. Phys Fluids 15:3452
20.
go back to reference Wen CY, Hornung HG (1995) Non-equilibrium dissociating flow over spheres. J Fluid Mech 299(1):389–405CrossRefMATH Wen CY, Hornung HG (1995) Non-equilibrium dissociating flow over spheres. J Fluid Mech 299(1):389–405CrossRefMATH
21.
go back to reference Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford
22.
go back to reference Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips. Nasa Technical Memorandum, 112204 Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips. Nasa Technical Memorandum, 112204
23.
go back to reference Kao HC (1964) Hypersonic viscous flow near the stagnation streamline of a blunt body: II. third-order boundary-layer theory and comparison with other methods. AIAA J 2(11):1898–1906 Kao HC (1964) Hypersonic viscous flow near the stagnation streamline of a blunt body: II. third-order boundary-layer theory and comparison with other methods. AIAA J 2(11):1898–1906
24.
go back to reference Santos WFN, Lewis MJ (2003) Aerodynamic heating performance of power law leading edges in rarefied hypersonic flow. AIAA Paper, pp 2003–3894 Santos WFN, Lewis MJ (2003) Aerodynamic heating performance of power law leading edges in rarefied hypersonic flow. AIAA Paper, pp 2003–3894
25.
go back to reference Murzinov IN (1966) Laminar boundary layer on a sphere in hypersonic flow of equilibrium dissociating air. Fluid Dynam 1(2):131–133CrossRef Murzinov IN (1966) Laminar boundary layer on a sphere in hypersonic flow of equilibrium dissociating air. Fluid Dynam 1(2):131–133CrossRef
Metadata
Title
Theoretical Modeling of Aeroheating Under Rarefied Gas Effects
Author
Zhi-Hui Wang
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44365-1_2

Premium Partners