Skip to main content
Top

2017 | OriginalPaper | Chapter

Thermal Analyses of Silver-Based Sulfosalts in Air

Authors : Fiseha Tesfaye, Daniel Lindberg

Published in: Materials Processing Fundamentals 2017

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sulfosalts Ag0.93Cu1.07S (stromeyerite) and α-AgBiS2 (schapbachite) have been studied under oxidizing conditions at elevated temperatures. The sulfosalts were synthesized from the pure simple sulfides in evacuated quartz ampoules. The synthesized samples were thermally analyzed in the temperature range from 298 to 1173 K by a simultaneous DTA-TGA analyzer. Based on the DTA measurements the phase transition of stromeyerite to the solid solution (Cu, Ag)2S(hcp) in air is determined to be T = (360.9 ± 2) K. For the first time, maximum thermal stability of (Ag, Cu)2S in an oxidizing atmosphere close to the partial pressure of oxygen in air (P(O2) ≈ 0.20 atm) is determined to be below T = (614 ± 2) K, above which it oxidizes to form Ag, CuO and Ag2SO4. The melting temperature of Ag2SO4 determined from the cooling DTA curve, T = (932.76 ± 2) K, is in good agreement with the literature value. Below T = 1173 K, the oxidation process for schapbachite in air has been indirectly determined to be: 2AgBiS2 + 5.5O2(g) ⇄ 2Ag + Bi2O3 + 4SO2(g).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Staude, A. Dorn, K. Pfaff, G. Markl, “Assemblages of ag–bi sulfosalts and conditions of their formation: the type locality of schapbachite (Ag0.4Pb0.2Bi0.4S) and neighboring mines in the Schwarzwald ore district, Southern Germany,” Can. Mineral. 48 (2010) 441–466. S. Staude, A. Dorn, K. Pfaff, G. Markl, “Assemblages of ag–bi sulfosalts and conditions of their formation: the type locality of schapbachite (Ag0.4Pb0.2Bi0.4S) and neighboring mines in the Schwarzwald ore district, Southern Germany,” Can. Mineral. 48 (2010) 441–466.
2.
go back to reference J.C. Kopp, V. Spieth, H.-J. Bernhardt, Z. dt. Ges. Geowiss, “Precious metals and selenides mineralisation in the copper-silver deposit Spremberg-Graustein, Niederlausitz, SE-Germany,” 163/4 (2012), 361–384. J.C. Kopp, V. Spieth, H.-J. Bernhardt, Z. dt. Ges. Geowiss, “Precious metals and selenides mineralisation in the copper-silver deposit Spremberg-Graustein, Niederlausitz, SE-Germany,” 163/4 (2012), 361–384.
3.
go back to reference J.R. Craig, G. Kullerud, “The Cu-Zn-S system,” Mineral Deposita 8 (1973), 81–91. J.R. Craig, G. Kullerud, “The Cu-Zn-S system,” Mineral Deposita 8 (1973), 81–91.
4.
go back to reference D. Chen et al., “Microwave synthesis of AgBiS2 dendrites in aqueous solution,” Inorg. Chem. Commun. 6 (2003) 710–712. D. Chen et al., “Microwave synthesis of AgBiS2 dendrites in aqueous solution,” Inorg. Chem. Commun. 6 (2003) 710–712.
5.
go back to reference L.K. Samanta, S. Chatterjee, “On the linear, nonlinear, and optoelectronic properties of some multinary compound semiconductors,” Phys. State. Sol. (b) 182 (1994), 85–89. L.K. Samanta, S. Chatterjee, “On the linear, nonlinear, and optoelectronic properties of some multinary compound semiconductors,” Phys. State. Sol. (b) 182 (1994), 85–89.
6.
go back to reference T. Thongtem, N. Tipcompor, S. Thongtem, “Characterization of AgBiS2 Nanostructured Flowers Produced by Solvothermal Reaction,” Mater. Lett. 64 (2010) 755–758. T. Thongtem, N. Tipcompor, S. Thongtem, “Characterization of AgBiS2 Nanostructured Flowers Produced by Solvothermal Reaction,” Mater. Lett. 64 (2010) 755–758.
7.
go back to reference G.Z. Shen et al., “Novel polyol route to AgBiS2 nanorods,” J. Cryst. Growth 252 (2003), 199–201. G.Z. Shen et al., “Novel polyol route to AgBiS2 nanorods,” J. Cryst. Growth 252 (2003), 199–201.
8.
go back to reference J.Q. Wang et al., “Synthesis of AgBiS2 microspheres by a templating method and their catalytic polymerization of alkylsilanes,” Chem. Commun. 46 (2007), 4931–4933. J.Q. Wang et al., “Synthesis of AgBiS2 microspheres by a templating method and their catalytic polymerization of alkylsilanes,” Chem. Commun. 46 (2007), 4931–4933.
9.
go back to reference H. Liu et al., “A mild biomolecule-assisted route for preparation of flower-like AgBiS2 crystals,” J. Alloys Compd. 509 (2011), 267–272. H. Liu et al., “A mild biomolecule-assisted route for preparation of flower-like AgBiS2 crystals,” J. Alloys Compd. 509 (2011), 267–272.
10.
go back to reference N.K. Allouche et al., “Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates,” J. Alloys Compd. 501 (2010) 85–88. N.K. Allouche et al., “Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates,” J. Alloys Compd. 501 (2010) 85–88.
11.
go back to reference M. Lei et al., “Cathodoluminescence variation of a single tapered CdS nanowire,” J. Alloys Compd. 509 (2011), 5020–5022. M. Lei et al., “Cathodoluminescence variation of a single tapered CdS nanowire,” J. Alloys Compd. 509 (2011), 5020–5022.
12.
go back to reference J. Yan et al., “Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane,” J. Mater. Sci. 47 (2012), 4159–4166. J. Yan et al., “Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane,” J. Mater. Sci. 47 (2012), 4159–4166.
13.
go back to reference M. Trots et al., “High-temperature thermal expansion and structural behavior of stromeyerite, AgCuS,” J. Phys.: Condens. Matter 19 (2007), 136–204. M. Trots et al., “High-temperature thermal expansion and structural behavior of stromeyerite, AgCuS,” J. Phys.: Condens. Matter 19 (2007), 136–204.
14.
go back to reference R.F. Kadrgulov et al., “Phase relations, ionic transport and diffusion in the alloys of Cu2S-Ag2S mixed conductors,” Ionics 7 (2001) 156–160. R.F. Kadrgulov et al., “Phase relations, ionic transport and diffusion in the alloys of Cu2S-Ag2S mixed conductors,” Ionics 7 (2001) 156–160.
15.
go back to reference H. Zhu et al., “Room-temperature synthesis of (Ag,Cu)2S hollow spheres by cation exchange and their optical properties,” Mater. Chem. Phys. 127 (2011) 24–27. H. Zhu et al., “Room-temperature synthesis of (Ag,Cu)2S hollow spheres by cation exchange and their optical properties,” Mater. Chem. Phys. 127 (2011) 24–27.
16.
go back to reference J.R. Craig, Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Mineralium Depozita 1(1967), 278–305. J.R. Craig, Phase relations and mineral assemblages in the Ag-Bi-Pb-S system. Mineralium Depozita 1(1967), 278–305.
17.
go back to reference S. Geller, J.H. Wernik, Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Acta Cryst 12 (1959), 46–54. S. Geller, J.H. Wernik, Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Acta Cryst 12 (1959), 46–54.
18.
go back to reference A.C. Glatz, A. Pinella, X-ray and Neutron Diffraction Studies of the High-Temperature 13-Phase of the AgBiSe2/AgBiS2 System. J Mater Sci 3 (1968), 498–501. A.C. Glatz, A. Pinella, X-ray and Neutron Diffraction Studies of the High-Temperature 13-Phase of the AgBiSe2/AgBiS2 System. J Mater Sci 3 (1968), 498–501.
19.
go back to reference D. Wu, The stability of matildite(AgBiS2) and Ag2Bi4S7 and phase relations in the system Ag2S-Bi2S3. Acta Mineralogica Sinica 9 (1989), 126–132. D. Wu, The stability of matildite(AgBiS2) and Ag2Bi4S7 and phase relations in the system Ag2S-Bi2S3. Acta Mineralogica Sinica 9 (1989), 126–132.
20.
go back to reference B.J. Skinner, “The System Cu-Ag-S,” Econ. Geol. 61(1966), 1–26. B.J. Skinner, “The System Cu-Ag-S,” Econ. Geol. 61(1966), 1–26.
21.
go back to reference Y.A. Chang, J. P. Neumann, U.V. Choudary, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Sulfur-Metal Systems, INCRA Monograph VII, The Metallurgy of Copper, NBS, Washington, 1979. Y.A. Chang, J. P. Neumann, U.V. Choudary, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Sulfur-Metal Systems, INCRA Monograph VII, The Metallurgy of Copper, NBS, Washington, 1979.
22.
go back to reference D. Wu, “Phase Relations in the System Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3, and Their Mineral Assemblages,” Chin. J. Geochem. 6 (1987) 225–233. D. Wu, “Phase Relations in the System Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3, and Their Mineral Assemblages,” Chin. J. Geochem. 6 (1987) 225–233.
23.
go back to reference S. Djurle, “An X-ray study on the system Ag–Cu–S” Acta Chem. Stand. 12 (1958) 1427–1436. S. Djurle, “An X-ray study on the system Ag–Cu–S” Acta Chem. Stand. 12 (1958) 1427–1436.
24.
go back to reference A.J. Frueh, “The crystal structure of stromeyerite, AgCuS: A possible defect structure,” Z. Kristallogr. 106 (1955) 299–307. A.J. Frueh, “The crystal structure of stromeyerite, AgCuS: A possible defect structure,” Z. Kristallogr. 106 (1955) 299–307.
25.
go back to reference Y. Takuhara et al., “Syntheses of complex sulfides AgCuS and Ag3CuS2 from the elements under hydrothermal conditions,” J. Ceram. Soc. Jpn. 117 (2009) 359–362. Y. Takuhara et al., “Syntheses of complex sulfides AgCuS and Ag3CuS2 from the elements under hydrothermal conditions,” J. Ceram. Soc. Jpn. 117 (2009) 359–362.
26.
go back to reference S.N. Guin et al., “Temperature dependent reversible p-n-p type conduction switching with colossal change in thermopower of semiconducting AgCuS,” J. Am. Chem. Soc. 136 (2014), 12712–12720. S.N. Guin et al., “Temperature dependent reversible p-n-p type conduction switching with colossal change in thermopower of semiconducting AgCuS,” J. Am. Chem. Soc. 136 (2014), 12712–12720.
27.
go back to reference J.A. Schmidt, A.E. Sagua, “Thermodynamic quantities for the ternary compound Stromeyerite: Cu1+δAg1-δS for 0 < δ < 0.1,” J. Chem. Thermodynamics 25 (1993)1453–1459. J.A. Schmidt, A.E. Sagua, “Thermodynamic quantities for the ternary compound Stromeyerite: Cu1+δAg1-δS for 0 < δ < 0.1,” J. Chem. Thermodynamics 25 (1993)1453–1459.
28.
go back to reference R.F. Kadrgulov, R.A. Yakshibaev, M.A. Khasanov, Ionics 7 (2001) 156–60. R.F. Kadrgulov, R.A. Yakshibaev, M.A. Khasanov, Ionics 7 (2001) 156–60.
30.
go back to reference F. Tesfaye, D. Lindberg, P. Taskinen, “Solid state electrochemical and calorimetric study of the equilibrium phase (Cu, Ag)2S,” 94 (2016), 101–109. F. Tesfaye, D. Lindberg, P. Taskinen, “Solid state electrochemical and calorimetric study of the equilibrium phase (Cu, Ag)2S,” 94 (2016), 101–109.
31.
go back to reference A. Roine et al., “HSC Chemistry 6,” Outotec Oy Research Centre, Finland, (2010). A. Roine et al., “HSC Chemistry 6,” Outotec Oy Research Centre, Finland, (2010).
32.
go back to reference C.G. Sceney et al., “Thermal analysis of copper dithiocarbamates,” 11 (1975), 301–306. C.G. Sceney et al., “Thermal analysis of copper dithiocarbamates,” 11 (1975), 301–306.
33.
go back to reference D. Živković et al., “Thermal study and mechanism of Ag2S oxidation in air,” J. Therm. Anal. Calorim. 111 (2013), 1173–1176. D. Živković et al., “Thermal study and mechanism of Ag2S oxidation in air,” J. Therm. Anal. Calorim. 111 (2013), 1173–1176.
34.
go back to reference K. Singh et al., “Investigation of the Ag2SO4- BaSO4 binary system from an SOx sensor point of view,” Ionics 8 (2002), 470–478. K. Singh et al., “Investigation of the Ag2SO4- BaSO4 binary system from an SOx sensor point of view,” Ionics 8 (2002), 470–478.
35.
go back to reference F. Oudich, et al., “Phase equilibria investigations and thermodynamic modeling of the system Bi2O3–Al2O3,” J. Nucl. Mater. 457 (2015), 72–79. F. Oudich, et al., “Phase equilibria investigations and thermodynamic modeling of the system Bi2O3–Al2O3,” J. Nucl. Mater. 457 (2015), 72–79.
Metadata
Title
Thermal Analyses of Silver-Based Sulfosalts in Air
Authors
Fiseha Tesfaye
Daniel Lindberg
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51580-9_6

Premium Partners