Skip to main content
Top

2016 | OriginalPaper | Chapter

7. Thermal Decomposition of Polymeric Materials

Authors : Artur Witkowski, Anna A. Stec, T. Richard Hull

Published in: SFPE Handbook of Fire Protection Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most of unwanted fires are fuelled by polymeric materials, ranging from natural polymers found in wood, cotton or wool, to synthetic polymers (“plastics”) derived from crude oil, showing much greater flammability. Polymer molecules are too large to be volatile, but break down thermally, by chain scission and chain stripping, to release fuel to the vapour phase prior to ignition. Experimental and numerical methods for investigating polymer decomposition are reviewed, followed by a description of the chemical decomposition of individual polymers. In order to use flammable synthetic polymers in high risk applications, fire retardants are frequently added to meet regulatory requirements. The range of available fire retardants is described in relation to their different modes of action. This is followed by a description of the more common test methods used to assess the flammability of polymeric materials, including ignitability, flame spread and heat release rate, together with a summary of the importance of physical properties and char formation on their burning behaviour.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ASTM E176, “Standard Terminology of Fire Standards”, in Annual Book of ASTM Standards, 4.07, American Society for Testing Materials, West Conshohocken. ASTM E176, “Standard Terminology of Fire Standards”, in Annual Book of ASTM Standards, 4.07, American Society for Testing Materials, West Conshohocken.
2.
go back to reference J.M.G. Cowie and V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edition, CRC Press, Boca Raton (2008). J.M.G. Cowie and V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edition, CRC Press, Boca Raton (2008).
3.
go back to reference S.I. Stoliarov, N. Safronava, and R.E. Lyon, “The effect of variation in polymer properties on the rate of burning”, Fire and Materials, 33, pp. 257–271 (2009).CrossRef S.I. Stoliarov, N. Safronava, and R.E. Lyon, “The effect of variation in polymer properties on the rate of burning”, Fire and Materials, 33, pp. 257–271 (2009).CrossRef
4.
go back to reference S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier B.V (2005). S.C. Moldoveanu, Analytical Pyrolysis of Synthetic Organic Polymers, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier B.V (2005).
5.
go back to reference R.E. Lyon, “Plastics and Rubber”, In Handbook of Building Materials for Fire Protection, Harper CA (ed), McGraw-Hill, Chap 3:3.1–3.51 (2004). R.E. Lyon, “Plastics and Rubber”, In Handbook of Building Materials for Fire Protection, Harper CA (ed), McGraw-Hill, Chap 3:3.1–3.51 (2004).
6.
go back to reference B. Schartel and T.R. Hull, “Development of fire-retarded materials - Interpretation of cone calorimeter data”, Fire and Materials, 31 (5), pp. 327–354 (2007).CrossRef B. Schartel and T.R. Hull, “Development of fire-retarded materials - Interpretation of cone calorimeter data”, Fire and Materials, 31 (5), pp. 327–354 (2007).CrossRef
7.
go back to reference A. Fina and G. Camino, Ignition mechanisms in polymers and polymer nanocomposites, Polym. Adv. Technol., 22, 1147–1155, (2011) A. Fina and G. Camino, Ignition mechanisms in polymers and polymer nanocomposites, Polym. Adv. Technol., 22, 1147–1155, (2011)
8.
go back to reference S. L. Madorsky, Thermal Degradation of Organic Polymers, Interscience, John Wiley, New York (1964). S. L. Madorsky, Thermal Degradation of Organic Polymers, Interscience, John Wiley, New York (1964).
9.
go back to reference “Plastics – Thermogravimetry (TG) of polymers – General Principles”, ISO 11358 (1997). “Plastics – Thermogravimetry (TG) of polymers – General Principles”, ISO 11358 (1997).
10.
go back to reference P.G. Laye, Differential Thermal Analysis and Differential Scanning Calorimetry, in Principles of Thermal Analysis and Calorimetry, Edited by P.J. Haines, Royal Society of Chemistry, Cambridge, UK (2002). P.G. Laye, Differential Thermal Analysis and Differential Scanning Calorimetry, in Principles of Thermal Analysis and Calorimetry, Edited by P.J. Haines, Royal Society of Chemistry, Cambridge, UK (2002).
11.
go back to reference ISO 11357–1 to 6:2005–2011 “Plastics - Differential scanning calorimetry (DSC) - Parts 1–6. ISO 11357–1 to 6:2005–2011 “Plastics - Differential scanning calorimetry (DSC) - Parts 1–6.
12.
go back to reference M. Reading, A. Luget, and R. Wilson, “Modulated differential scanning calorimetry”, Thermochimica Acta, 238, pp. 295–307 (1994).CrossRef M. Reading, A. Luget, and R. Wilson, “Modulated differential scanning calorimetry”, Thermochimica Acta, 238, pp. 295–307 (1994).CrossRef
13.
go back to reference S. Zhang, T.R. Hull, A.R. Horrocks, G. Smart, B.K. Kandola, J. Ebdon, P. Joseph and B. Hunt: Thermal degradation analysis and XRD characterisation of fibre-forming synthetic polypropylene containing nanoclay: Polym.Degrad.Stab., 92, 727–732, (2007). S. Zhang, T.R. Hull, A.R. Horrocks, G. Smart, B.K. Kandola, J. Ebdon, P. Joseph and B. Hunt: Thermal degradation analysis and XRD characterisation of fibre-forming synthetic polypropylene containing nanoclay: Polym.Degrad.Stab., 92, 727–732, (2007).
14.
go back to reference A. Witkowski, A.A. Stec and T.R. Hull, The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA, Polym. Degrad. Stab., 97, 2231–2240, (2012). A. Witkowski, A.A. Stec and T.R. Hull, The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA, Polym. Degrad. Stab., 97, 2231–2240, (2012).
15.
go back to reference M. Sacristan, T.R. Hull, A.A. Stec, J.C. Ronda, M. Galia, and V. Cadiz, “Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches,” Polymer Degradation and Stability, 95, pp. 1269–1274 (2010).CrossRef M. Sacristan, T.R. Hull, A.A. Stec, J.C. Ronda, M. Galia, and V. Cadiz, “Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches,” Polymer Degradation and Stability, 95, pp. 1269–1274 (2010).CrossRef
16.
go back to reference I.C. McNeill, L. Ackerman, S.N. Gupta, M. Zulfiquar, and S. Zulfiquar, “Part A: Polymer Chemistry”, Journal of Polymer Science, 15, p. 2381 (1977). I.C. McNeill, L. Ackerman, S.N. Gupta, M. Zulfiquar, and S. Zulfiquar, “Part A: Polymer Chemistry”, Journal of Polymer Science, 15, p. 2381 (1977).
17.
go back to reference J.P. Lewicki, K. Pielichowski, P.T. De La Croix, B. Janowski, D. Todd, and J.J. Liggat, “Thermal degradation studies of polyurethane/POSS nanohybrid elastomers”, Polymer Degradation and Stability, 95, pp. 1099–105 (2010).CrossRef J.P. Lewicki, K. Pielichowski, P.T. De La Croix, B. Janowski, D. Todd, and J.J. Liggat, “Thermal degradation studies of polyurethane/POSS nanohybrid elastomers”, Polymer Degradation and Stability, 95, pp. 1099–105 (2010).CrossRef
18.
go back to reference ASTM D7309-11, “Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry” (2011). ASTM D7309-11, “Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry” (2011).
19.
go back to reference R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef
20.
go back to reference S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman and T. Kashiwagi, “PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations”, Fire Mater., 24, 201–208, (2000).CrossRef S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman and T. Kashiwagi, “PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations”, Fire Mater., 24, 201–208, (2000).CrossRef
21.
go back to reference M.V. Petrova, F.A. Williams, A small detailed chemical-kinetic mechanism for hydrocarbon combustion, Combustion and Flame, 144, 526–544,(2006).CrossRef M.V. Petrova, F.A. Williams, A small detailed chemical-kinetic mechanism for hydrocarbon combustion, Combustion and Flame, 144, 526–544,(2006).CrossRef
22.
go back to reference R. E. Lyon, N. Safronava, and S. I. Stoliarov, The Role of Thermal Decomposition Kinetics in the Burning of Polymers. Proceedings of the 12th International Conference on Fire Science and Engineering (INTERFLAM), 2010. R. E. Lyon, N. Safronava, and S. I. Stoliarov, The Role of Thermal Decomposition Kinetics in the Burning of Polymers. Proceedings of the 12th International Conference on Fire Science and Engineering (INTERFLAM), 2010.
23.
go back to reference L. Reich and S.S. Stivala, Elements of Polymer Degradation, McGraw-Hill, New York (1971). L. Reich and S.S. Stivala, Elements of Polymer Degradation, McGraw-Hill, New York (1971).
24.
go back to reference K. McGrattan, R. McDermott, and W. Mell, et al., “Modeling the burning of complicated objects using Lagrangian particles”, in Conference proceedings of the twelfth international interflame conference, pp. 743–753 (2010). K. McGrattan, R. McDermott, and W. Mell, et al., “Modeling the burning of complicated objects using Lagrangian particles”, in Conference proceedings of the twelfth international interflame conference, pp. 743–753 (2010).
25.
go back to reference R.E. Lyon, N. Safronava, and E. Oztekin, “A simple method for determining kinetic parameters for materials in fire models”, Fire Safety Science, 10, pp. 765–777 (2011).CrossRef R.E. Lyon, N. Safronava, and E. Oztekin, “A simple method for determining kinetic parameters for materials in fire models”, Fire Safety Science, 10, pp. 765–777 (2011).CrossRef
26.
go back to reference H. L. Friedman, “New methods for evaluating kinetic parameters from thermal analysis data”, Journal of Polymer Science, Polymer Letter 7(1), pp. 41–46 (1969). H. L. Friedman, “New methods for evaluating kinetic parameters from thermal analysis data”, Journal of Polymer Science, Polymer Letter 7(1), pp. 41–46 (1969).
27.
go back to reference C. Lautenberger, G. Rein, and C. Fernandez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data”, Fire Safety Journal, 41, pp. 204–214 (2006).CrossRef C. Lautenberger, G. Rein, and C. Fernandez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data”, Fire Safety Journal, 41, pp. 204–214 (2006).CrossRef
28.
go back to reference G. Rein, C. Lautenberger, and C. Fernandez-Pello, “Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion”, Combustion and Flame, 146, pp. 95–108 (2006).CrossRef G. Rein, C. Lautenberger, and C. Fernandez-Pello, “Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion”, Combustion and Flame, 146, pp. 95–108 (2006).CrossRef
29.
go back to reference A. Matala, S. Hostikka and J. Mangs, “Estimation of pyrolysis model parameters for solid materials using thermogravimetric data”, Fire Safety Science, 9, pp. 1213–1223 (2009).CrossRef A. Matala, S. Hostikka and J. Mangs, “Estimation of pyrolysis model parameters for solid materials using thermogravimetric data”, Fire Safety Science, 9, pp. 1213–1223 (2009).CrossRef
30.
go back to reference C. Lautenberger and C. Fernandez-Pello, “Generalized pyrolysis model for combustible solids”, Fire Safety Journal, 44, pp. 819–839 (2009).CrossRef C. Lautenberger and C. Fernandez-Pello, “Generalized pyrolysis model for combustible solids”, Fire Safety Journal, 44, pp. 819–839 (2009).CrossRef
31.
go back to reference C. Lautenberger and C. Fernandez-Pello, “Optimization algorithms for material pyrolysis property estimation”, Fire Safety Science, 10, pp. 751–764 (2011).CrossRef C. Lautenberger and C. Fernandez-Pello, “Optimization algorithms for material pyrolysis property estimation”, Fire Safety Science, 10, pp. 751–764 (2011).CrossRef
32.
go back to reference M. Chaos, M. M. Khan, and N. Krishnamoorthy, et al., “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests”, Proceedings of the Combustion Institute, 33(2), pp. 2599–2606 (2011). M. Chaos, M. M. Khan, and N. Krishnamoorthy, et al., “Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests”, Proceedings of the Combustion Institute, 33(2), pp. 2599–2606 (2011).
33.
go back to reference A.K. Galwey and M.E. Brown, “Arrhenius parameters and compensation behaviour in solid-state decompositions”, Thermochimica Acta, 300, pp. 107–115 (1997).CrossRef A.K. Galwey and M.E. Brown, “Arrhenius parameters and compensation behaviour in solid-state decompositions”, Thermochimica Acta, 300, pp. 107–115 (1997).CrossRef
34.
go back to reference A.V. Nikolaev, V.A. Logvinenko, and V.M. Gorbatchev, “Special features of the compensation effect in nonisothermal kinetics of solid-phase reactions”, Journal of Thermal Analysis, 6, pp. 473–577 (1974).CrossRef A.V. Nikolaev, V.A. Logvinenko, and V.M. Gorbatchev, “Special features of the compensation effect in nonisothermal kinetics of solid-phase reactions”, Journal of Thermal Analysis, 6, pp. 473–577 (1974).CrossRef
35.
go back to reference A. Matala and S. Hostikka, “Pyrolysis modeling of PVC cable materials”, Fire Safety Science, 10, pp. 917–930 (2011).CrossRef A. Matala and S. Hostikka, “Pyrolysis modeling of PVC cable materials”, Fire Safety Science, 10, pp. 917–930 (2011).CrossRef
36.
go back to reference J.H. Flynn, in Encyclopedia of Polymer Science and Engineering, ed. H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, pp. 690–723 (Suppl.), New York, Wiley (1989). J.H. Flynn, in Encyclopedia of Polymer Science and Engineering, ed. H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, pp. 690–723 (Suppl.), New York, Wiley (1989).
37.
go back to reference S. Vyazovkin and C.A. Wight, “Kinetics in Solids”, Annual Review of Physical Chemistry, 48,125-149 (1997).CrossRef S. Vyazovkin and C.A. Wight, “Kinetics in Solids”, Annual Review of Physical Chemistry, 48,125-149 (1997).CrossRef
38.
go back to reference S. Vyazovkin, and C.A. Wight, “Model-free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data”, Thermochimica Acta, 340/341, pp. 53–68 (1999). S. Vyazovkin, and C.A. Wight, “Model-free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data”, Thermochimica Acta, 340/341, pp. 53–68 (1999).
39.
go back to reference J.H. Flynn and L.A. Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, 70A(6), pp. 487–523 (1966).CrossRef J.H. Flynn and L.A. Wall, “General Treatment of the Thermogravimetry of Polymers”, Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, 70A(6), pp. 487–523 (1966).CrossRef
40.
go back to reference A.K. Galwey and M.E. Brown, “Kinetic Background to Thermal Analysis and Calorimetry”, in Handbook of Thermal Analysis and Calorimetry, Volume 1, Principles and Practice (M.E. Brown, ed.), Elsevier, New York, pp. 147–224 (1998). A.K. Galwey and M.E. Brown, “Kinetic Background to Thermal Analysis and Calorimetry”, in Handbook of Thermal Analysis and Calorimetry, Volume 1, Principles and Practice (M.E. Brown, ed.), Elsevier, New York, pp. 147–224 (1998).
41.
go back to reference H.E. Kissinger, “Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis”, Journal of Research of the National Bureau of Standards, 57(4), pp. 217–221 (1956).CrossRef H.E. Kissinger, “Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis”, Journal of Research of the National Bureau of Standards, 57(4), pp. 217–221 (1956).CrossRef
42.
go back to reference H.E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Analytical Chemistry, 29(11), pp. 1702–1706 (1957).CrossRef H.E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Analytical Chemistry, 29(11), pp. 1702–1706 (1957).CrossRef
43.
go back to reference J.H. Flynn, “Temperature Dependence of the Rate of Reaction in Thermal Analysis”, Journal of Thermal Analysis, 36, pp. 1579–1573 (1990).CrossRef J.H. Flynn, “Temperature Dependence of the Rate of Reaction in Thermal Analysis”, Journal of Thermal Analysis, 36, pp. 1579–1573 (1990).CrossRef
44.
go back to reference T. Ozawa, “Kinetic Analysis of Derivative Curves in Thermal Analysis”, Journal of Thermal Analysis, 2, pp. 301–324 (1970).CrossRef T. Ozawa, “Kinetic Analysis of Derivative Curves in Thermal Analysis”, Journal of Thermal Analysis, 2, pp. 301–324 (1970).CrossRef
45.
go back to reference K.B. McGrattan, B. Klein, S. Hostikka, and J. Floyd, “Fire dynamics simulator (version 5) user’s guide”, NIST Special Publication 1019–5, National Institute of Standards and Technology, Gaithersburg, MD (2007). K.B. McGrattan, B. Klein, S. Hostikka, and J. Floyd, “Fire dynamics simulator (version 5) user’s guide”, NIST Special Publication 1019–5, National Institute of Standards and Technology, Gaithersburg, MD (2007).
46.
go back to reference G.R. Heal, “Thermogravimetry and Derivative Thermogravimetry in Principles of Thermal Analysis and Calorimetry”, (P. J. Haines, ed.), Royal Society of Chemistry, Cambridge, UK (2002). G.R. Heal, “Thermogravimetry and Derivative Thermogravimetry in Principles of Thermal Analysis and Calorimetry”, (P. J. Haines, ed.), Royal Society of Chemistry, Cambridge, UK (2002).
47.
go back to reference J. Criado, M. Gonzalez, A. Ortega and C. Real, “Some considerations regarding the determination of the activation energy of solid-state reactions from a series of isothermal data”, Journal of Thermal Analysis, 29, pp. 243–250 (1984).CrossRef J. Criado, M. Gonzalez, A. Ortega and C. Real, “Some considerations regarding the determination of the activation energy of solid-state reactions from a series of isothermal data”, Journal of Thermal Analysis, 29, pp. 243–250 (1984).CrossRef
48.
go back to reference F. Rogers and T. Ohlemiller, “Pyrolysis kinetics of a polyurethane foam by thermogravimetry; a general kinetic method”, Journal of Macromolecular Science, 1, pp. 169–185 (1981).CrossRef F. Rogers and T. Ohlemiller, “Pyrolysis kinetics of a polyurethane foam by thermogravimetry; a general kinetic method”, Journal of Macromolecular Science, 1, pp. 169–185 (1981).CrossRef
49.
go back to reference J.H. Sharp and S.A. Wentworth, ”Kinetic analysis of thermogravimetric data,” Analytical Chemistry, 41, pp. 2060–2062 (1969). J.H. Sharp and S.A. Wentworth, ”Kinetic analysis of thermogravimetric data,” Analytical Chemistry, 41, pp. 2060–2062 (1969).
50.
go back to reference B.N.N. Achar, G.W. Brindley and J.H. Sharp, “Kinetics and mechanism of dehydroxylation processes,” Proceedings of the International Clay Conference, p. 67, Jerusalem (1966). B.N.N. Achar, G.W. Brindley and J.H. Sharp, “Kinetics and mechanism of dehydroxylation processes,” Proceedings of the International Clay Conference, p. 67, Jerusalem (1966).
51.
go back to reference E.S. Freeman and B. Carroll, “The Application of Thermoanalytical Decomposition of Calcium Oxalate Monohydrate,” Journal of Physical Chemistry, 62, pp. 394–397 (1958).CrossRef E.S. Freeman and B. Carroll, “The Application of Thermoanalytical Decomposition of Calcium Oxalate Monohydrate,” Journal of Physical Chemistry, 62, pp. 394–397 (1958).CrossRef
52.
go back to reference E.S. Freeman and B. Carroll, “Interpretation of the kinetics of thermogravimetric analysis,” Journal of Physical Chemistry, 73, pp. 751–752 (1969).CrossRef E.S. Freeman and B. Carroll, “Interpretation of the kinetics of thermogravimetric analysis,” Journal of Physical Chemistry, 73, pp. 751–752 (1969).CrossRef
53.
go back to reference A.W. Coats and J.P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, 201, pp. 68–69 (1964).CrossRef A.W. Coats and J.P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, 201, pp. 68–69 (1964).CrossRef
54.
go back to reference A.W. Coats and J.P. Redfern, “Kinetic parameters from thermogravimetric data. II.,” Journal of Polymer Science, Part B: Polymer Letter 3, pp. 917–920 (1965). A.W. Coats and J.P. Redfern, “Kinetic parameters from thermogravimetric data. II.,” Journal of Polymer Science, Part B: Polymer Letter 3, pp. 917–920 (1965).
55.
go back to reference J.P. Elder, “The general applicability of the Kissinger equation in thermal analysis,” Journal of Thermal Analysis, 30, pp. 657–669 (1985).CrossRef J.P. Elder, “The general applicability of the Kissinger equation in thermal analysis,” Journal of Thermal Analysis, 30, pp. 657–669 (1985).CrossRef
56.
go back to reference P. Simon, “Isoconversional methods: Fundamentals, meaning and application,” Journal of Thermal Analysis and Calorimetry, 76, pp. 123–132 (2004).CrossRef P. Simon, “Isoconversional methods: Fundamentals, meaning and application,” Journal of Thermal Analysis and Calorimetry, 76, pp. 123–132 (2004).CrossRef
57.
go back to reference J. Zsako, “Kinetic Analysis of Thermogravimetric Data, VI, Some Problems of Deriving Kinetic Parameters from TG Curves,” Journal of Thermal Analysis, 5, pp. 239–251 (1973).CrossRef J. Zsako, “Kinetic Analysis of Thermogravimetric Data, VI, Some Problems of Deriving Kinetic Parameters from TG Curves,” Journal of Thermal Analysis, 5, pp. 239–251 (1973).CrossRef
58.
go back to reference J. Zsako, “Kinetic analysis of thermogravimetric data XXIX. Remarks on the ‘many curves’ method,” Journal of Thermal Analysis, 46, pp. 1845–1864 (1996).CrossRef J. Zsako, “Kinetic analysis of thermogravimetric data XXIX. Remarks on the ‘many curves’ method,” Journal of Thermal Analysis, 46, pp. 1845–1864 (1996).CrossRef
59.
go back to reference S. Vyazovkin, “Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project — the light at the end of the tunnel?,” Thermochimica Acta, 355, pp. 155–163 (2000).CrossRef S. Vyazovkin, “Computational aspects of kinetic analysis.: Part C. The ICTAC Kinetics Project — the light at the end of the tunnel?,” Thermochimica Acta, 355, pp. 155–163 (2000).CrossRef
60.
go back to reference A. Khawam and D.R. Flanagan, “Role of isoconversional methods in varying activation energies of solid-state kinetics. I. Isothermal kinetic studies,” Thermochimica Acta, 429, pp. 93–102 (2005).CrossRef A. Khawam and D.R. Flanagan, “Role of isoconversional methods in varying activation energies of solid-state kinetics. I. Isothermal kinetic studies,” Thermochimica Acta, 429, pp. 93–102 (2005).CrossRef
61.
go back to reference T. Ozawa, “A new method of analyzing thermogravimetric data,” Bulletin of the Chemical Society of Japan, 38, pp. 1881–1886 (1965).CrossRef T. Ozawa, “A new method of analyzing thermogravimetric data,” Bulletin of the Chemical Society of Japan, 38, pp. 1881–1886 (1965).CrossRef
62.
go back to reference J.H. Flynn and L.A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of Polymer Science, Part B: Polymer Letter, 4, pp. 323–328 (1966). J.H. Flynn and L.A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of Polymer Science, Part B: Polymer Letter, 4, pp. 323–328 (1966).
63.
go back to reference C. Doyle, “Kinetic analysis of thermogravimetric data”, Journal of Applied Polymer Science, Vol. 5, No. 15, pp. 285–292 (1961).CrossRef C. Doyle, “Kinetic analysis of thermogravimetric data”, Journal of Applied Polymer Science, Vol. 5, No. 15, pp. 285–292 (1961).CrossRef
64.
go back to reference S. Vyazovkin and D. Dollimore, “Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids,” Journal of Chemical Information and Computer Sciences, 36, pp. 42–45 (1996).CrossRef S. Vyazovkin and D. Dollimore, “Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids,” Journal of Chemical Information and Computer Sciences, 36, pp. 42–45 (1996).CrossRef
65.
go back to reference M.E. Brown, Introduction to thermal analysis: Techniques and applications, Chapter 10, 2nd ed, Kluwer, Amsterdam (2001). M.E. Brown, Introduction to thermal analysis: Techniques and applications, Chapter 10, 2nd ed, Kluwer, Amsterdam (2001).
66.
go back to reference A.K. Galwey and M.E. Brown, “Thermal decomposition of ionic solids: Chemical properties and reactivities of ionic crystalline phases”, Elsevier, Amsterdam, pp. 139–171 (1999). A.K. Galwey and M.E. Brown, “Thermal decomposition of ionic solids: Chemical properties and reactivities of ionic crystalline phases”, Elsevier, Amsterdam, pp. 139–171 (1999).
67.
go back to reference W. Gautschi and W.F. Cahill, “Exponential integral and related functions”, in Handbook of mathematical functions with formulas, graphs, and mathematical tables (M. Abramowitz and I. Stegun, eds.), National Bureau of Standards, Washington, DC, pp. 227–237 (1964). W. Gautschi and W.F. Cahill, “Exponential integral and related functions”, in Handbook of mathematical functions with formulas, graphs, and mathematical tables (M. Abramowitz and I. Stegun, eds.), National Bureau of Standards, Washington, DC, pp. 227–237 (1964).
68.
go back to reference S. Vyazovkin, “Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature,” Journal of Computational Chemistry, 18, pp. 393–402 (1997).CrossRef S. Vyazovkin, “Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature,” Journal of Computational Chemistry, 18, pp. 393–402 (1997).CrossRef
69.
go back to reference S. Vyazovkin, “Modification of the integral isoconversional method to account for variation in the activation energy,” Journal of Computational Chemistry, 22, pp. 178–183 (2001).CrossRef S. Vyazovkin, “Modification of the integral isoconversional method to account for variation in the activation energy,” Journal of Computational Chemistry, 22, pp. 178–183 (2001).CrossRef
70.
go back to reference A. Matala, C. Lautenberger and S. Hostikka, “Generalized direct method for pyrolysis kinetic parameter estimation and comparison to existing methods”, Journal of Fire Sciences, 30(4), pp. 339–356 (2012).CrossRef A. Matala, C. Lautenberger and S. Hostikka, “Generalized direct method for pyrolysis kinetic parameter estimation and comparison to existing methods”, Journal of Fire Sciences, 30(4), pp. 339–356 (2012).CrossRef
71.
go back to reference R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef
72.
go back to reference T. Ohlemiller, “Modeling of smoldering combustion propagation”, Progress in Energy and Combustion Science, 11, 277–310 (1985).CrossRef T. Ohlemiller, “Modeling of smoldering combustion propagation”, Progress in Energy and Combustion Science, 11, 277–310 (1985).CrossRef
73.
go back to reference A. Matala, “Estimation of Solid Phase Reaction Parameters for Fire Simulation”, Master’s thesis, Helsinki University of Technology, Finland (2008). A. Matala, “Estimation of Solid Phase Reaction Parameters for Fire Simulation”, Master’s thesis, Helsinki University of Technology, Finland (2008).
74.
go back to reference C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Users’ guide (2009). C. Lautenberger, “A Generalized Pyrolysis Model for Combustible Solids”, Users’ guide (2009).
75.
go back to reference S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the burning rates of non-charring polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRef S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the burning rates of non-charring polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRef
76.
go back to reference S.I. Stoliarov, N. Safronava, R.E. Lyon, “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, pp. 257–271 (2009).CrossRef S.I. Stoliarov, N. Safronava, R.E. Lyon, “The effect of variation in polymer properties on the rate of burning,” Fire and Materials, 33, pp. 257–271 (2009).CrossRef
77.
go back to reference C. Lautenberger, E. Kim, N. Dembsey, and C. Fernandez-Pello, “The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite”, Fire Safety Science, 9, pp. 1201–1212 (2008).CrossRef C. Lautenberger, E. Kim, N. Dembsey, and C. Fernandez-Pello, “The Role of Decomposition Kinetics in Pyrolysis Modeling – Application to a Fire Retardant Polyester Composite”, Fire Safety Science, 9, pp. 1201–1212 (2008).CrossRef
78.
go back to reference J.E.J. Staggs, “A theory for quasi-steady single-step thermal degradation of polymers”, Fire and Materials, 22, 1998, pp. 109–118 (1998).CrossRef J.E.J. Staggs, “A theory for quasi-steady single-step thermal degradation of polymers”, Fire and Materials, 22, 1998, pp. 109–118 (1998).CrossRef
79.
go back to reference J. Zhang, M.A. Delichatsios, and S. Bourbigot, “Experimental and numerical study of the effects of nanoparticles on pyrolysis of polyamide 6 (PA6) nanocomposite in the cone calorimeter”, Combustion and Flame, 156, pp. 2056–2062 (2009).CrossRef J. Zhang, M.A. Delichatsios, and S. Bourbigot, “Experimental and numerical study of the effects of nanoparticles on pyrolysis of polyamide 6 (PA6) nanocomposite in the cone calorimeter”, Combustion and Flame, 156, pp. 2056–2062 (2009).CrossRef
80.
go back to reference F. Jia, E.R. Galea, and M.K. Patel, “The numerical simulation of the non-charring pyrolysis process and fire development within a compartment”, Applied Mathematical Modelling, 23, pp. 587–607 (1999).MATHCrossRef F. Jia, E.R. Galea, and M.K. Patel, “The numerical simulation of the non-charring pyrolysis process and fire development within a compartment”, Applied Mathematical Modelling, 23, pp. 587–607 (1999).MATHCrossRef
82.
go back to reference C. Lautenberger, “Gpyro – A Generalized Pyrolysis Model for Combustible Solids” – Users’ Guide Version 0.700 (February 19, 2009). C. Lautenberger, “Gpyro – A Generalized Pyrolysis Model for Combustible Solids” Users’ Guide Version 0.700 (February 19, 2009).
84.
go back to reference K.B. Mc Grattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm, “Fire Dynamics Simulator (Version 5). Technical Reference Guide”, Volume 1: Mathematical Model, NIST Special Publication 1018–5, Gaithersburg, MD, (October 2007). K.B. Mc Grattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm, “Fire Dynamics Simulator (Version 5). Technical Reference Guide”, Volume 1: Mathematical Model, NIST Special Publication 1018–5, Gaithersburg, MD, (October 2007).
87.
go back to reference S.I. Stoliarov and R.E. Lyon, “Thermo-kinetic model of burning for pyrolyzing materials”, in Proceedings of the Ninth International Symposium on Fire Safety Science, pp. 1141–1152 (2009). S.I. Stoliarov and R.E. Lyon, “Thermo-kinetic model of burning for pyrolyzing materials”, in Proceedings of the Ninth International Symposium on Fire Safety Science, pp. 1141–1152 (2009).
88.
go back to reference L. Bustamante Valencia, Experimental and Numerical Investigation of the Thermal Decomposition of Materials at Three Scales: Application to Polyether Polyurethane Foam used in Upholstered Furniture, Ph.D. Thesis, ENSMA, Poitiers, France (2009). L. Bustamante Valencia, Experimental and Numerical Investigation of the Thermal Decomposition of Materials at Three Scales: Application to Polyether Polyurethane Foam used in Upholstered Furniture, Ph.D. Thesis, ENSMA, Poitiers, France (2009).
90.
go back to reference Q. Duan, V.K. Gupta and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” Journal of Optimization Theory and Applications, 76, pp. 501–521 (1993).MathSciNetMATHCrossRef Q. Duan, V.K. Gupta and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” Journal of Optimization Theory and Applications, 76, pp. 501–521 (1993).MathSciNetMATHCrossRef
91.
go back to reference Q. Duan, S. Sorooshian and V.K. Gupta, “Optimal Use of the SCEUA Global Optimization Method for Calibrating Watershed Models,” Journal of Hydrology, 158, pp. 265–284 (1994).CrossRef Q. Duan, S. Sorooshian and V.K. Gupta, “Optimal Use of the SCEUA Global Optimization Method for Calibrating Watershed Models,” Journal of Hydrology, 158, pp. 265–284 (1994).CrossRef
93.
go back to reference S.I. Stoliarov and R.E. Lyon, “Thermo-Kinetic Model of Burning”, Federal Aviation Administration Technical Note DOT/FAA/AR-TN-08/17 (2008). S.I. Stoliarov and R.E. Lyon, “Thermo-Kinetic Model of Burning”, Federal Aviation Administration Technical Note DOT/FAA/AR-TN-08/17 (2008).
94.
go back to reference S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the Burning Rates of Non-Charring Polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRef S.I. Stoliarov, S. Crowley, R.E. Lyon, and G.T. Linteris, “Prediction of the Burning Rates of Non-Charring Polymers”, Combustion and Flame, 156, pp. 1068–1083 (2009).CrossRef
95.
go back to reference S.S. Rahatekar, M. Zammarano, S. Matko, K.K. Koziol, M.H. Windle, T. Kashiwagi, and J.W. Gilman, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposites”, Polymer Degradation and Stability, 98, pp. 870–879 (2010). S.S. Rahatekar, M. Zammarano, S. Matko, K.K. Koziol, M.H. Windle, T. Kashiwagi, and J.W. Gilman, “Effect of Carbon Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposites”, Polymer Degradation and Stability, 98, pp. 870–879 (2010).
96.
go back to reference P. Patel, T.R. Hull, A.A. Stec, and R. E. Lyon, “Influence of physical properties on polymer flammability in the cone calorimeter,” Polymers for Advanced Technologies, 22, pp. 1100–1107 (2011). P. Patel, T.R. Hull, A.A. Stec, and R. E. Lyon, “Influence of physical properties on polymer flammability in the cone calorimeter,” Polymers for Advanced Technologies, 22, pp. 1100–1107 (2011).
97.
go back to reference J.G. Quintiere, Principles of Fire Behaviour, Delmar, Albany, NY (1997). J.G. Quintiere, Principles of Fire Behaviour, Delmar, Albany, NY (1997).
98.
go back to reference D. Drysdale, An Introduction to Fire Dynamics, 2nd Edition, John Wiley & Sons, Chichester (1999). D. Drysdale, An Introduction to Fire Dynamics, 2nd Edition, John Wiley & Sons, Chichester (1999).
99.
go back to reference T. Faravelli, G. Bozzano, M. Colombo, E. Ranzi, M. Dente, Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures, Journal of Analytical and Applied Pyrolysis, 70, 761–777, 2003.CrossRef T. Faravelli, G. Bozzano, M. Colombo, E. Ranzi, M. Dente, Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures, Journal of Analytical and Applied Pyrolysis, 70, 761–777, 2003.CrossRef
100.
go back to reference Z. Gao, I. Amasaki, and M. Nakada, ”A thermogravimetric study on thermal degradation of polyethylene,” Journal of Analytical and Applied Pyrolysis, 67 (1), pp. 1–9 (2003). Z. Gao, I. Amasaki, and M. Nakada, ”A thermogravimetric study on thermal degradation of polyethylene,” Journal of Analytical and Applied Pyrolysis, 67 (1), pp. 1–9 (2003).
101.
go back to reference A. Marcilla, A. Gomez, A.N. Garcia, and M.M. Olaya, “Kinetic study of the catalytic decomposition of different commercial polyethylenes over an MCM-41 catalyst”, Journal of Analytical and Applied Pyrolysis, 64, pp. 85-101(2002).CrossRef A. Marcilla, A. Gomez, A.N. Garcia, and M.M. Olaya, “Kinetic study of the catalytic decomposition of different commercial polyethylenes over an MCM-41 catalyst”, Journal of Analytical and Applied Pyrolysis, 64, pp. 85-101(2002).CrossRef
102.
go back to reference C.F Cullis and M.M Hirschler, The combustion of organic polymers, New York, NY: Oxford University Press (1981). C.F Cullis and M.M Hirschler, The combustion of organic polymers, New York, NY: Oxford University Press (1981).
103.
go back to reference S.L. Madorsky, "Thermal degradation of organic polymers”, Interscience Publishers, A Division of John Wiley & Sons Inc. (1964). S.L. Madorsky, "Thermal degradation of organic polymers”, Interscience Publishers, A Division of John Wiley & Sons Inc. (1964).
104.
go back to reference S.M. Thornberg, R. Bernstein, D.K. Derzon, A.N. Irwin, S.B. Klamo, and R.L. Clough, “The genesis of CO2 and CO in the thermooxidative degradation of polypropylene”, Polymer Degradation and Stability, 92, pp. 94–102 (2007).CrossRef S.M. Thornberg, R. Bernstein, D.K. Derzon, A.N. Irwin, S.B. Klamo, and R.L. Clough, “The genesis of CO2 and CO in the thermooxidative degradation of polypropylene”, Polymer Degradation and Stability, 92, pp. 94–102 (2007).CrossRef
105.
go back to reference R. Bernstein, S.M. Thornberg, R.A. Assink, A.N. Irwin, J.M. Hochrein, J.R. Brown, D.K. Derzon, S.B. Klamo, and R.L. Clough, “The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labelling,” Polymer Degradation and Stability, 92, pp. 2076–2094 (2007).CrossRef R. Bernstein, S.M. Thornberg, R.A. Assink, A.N. Irwin, J.M. Hochrein, J.R. Brown, D.K. Derzon, S.B. Klamo, and R.L. Clough, “The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labelling,” Polymer Degradation and Stability, 92, pp. 2076–2094 (2007).CrossRef
106.
go back to reference G.G. Cameron, W.A.J. Bryce, I.T. McWalter, “Thermal degradation of polystyrene-5. Effects of initiator residues,” European Polymer Journal, 20, pp. 563–569 (1984).CrossRef G.G. Cameron, W.A.J. Bryce, I.T. McWalter, “Thermal degradation of polystyrene-5. Effects of initiator residues,” European Polymer Journal, 20, pp. 563–569 (1984).CrossRef
107.
go back to reference N. Grassie and G. Scott, Polymer Degradation and Stabilisation, Cambridge University Press, Cambridge, UK (1985). N. Grassie and G. Scott, Polymer Degradation and Stabilisation, Cambridge University Press, Cambridge, UK (1985).
108.
go back to reference W.R. Zeng, S.F Li, and W.K. Chow, “PMMA Review on Chemical Reactions of Burning Poly(methylmethacrylate)”, Journal of Fire Sciences, 20, p. 401 (2002). W.R. Zeng, S.F Li, and W.K. Chow, “PMMA Review on Chemical Reactions of Burning Poly(methylmethacrylate)”, Journal of Fire Sciences, 20, p. 401 (2002).
109.
go back to reference I.C. McNeill and A. Rincon, “Thermal degradation of polycarbonates: Reaction conditions and reaction mechanisms,” Polymer Degradation and Stability, 39, pp. 13–19 (1993).CrossRef I.C. McNeill and A. Rincon, “Thermal degradation of polycarbonates: Reaction conditions and reaction mechanisms,” Polymer Degradation and Stability, 39, pp. 13–19 (1993).CrossRef
110.
go back to reference . A. Davis and J.H. Golden, J. Macromol. Scie. Rev. Macromol. Chem. C, 3, p. 49 (1969). . A. Davis and J.H. Golden, J. Macromol. Scie. Rev. Macromol. Chem. C, 3, p. 49 (1969).
111.
go back to reference S.C. Moldoveanu, “Analytical Pyrolysis of Synthetic Organic Polymers”, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier (2005). S.C. Moldoveanu, “Analytical Pyrolysis of Synthetic Organic Polymers”, Techniques and Instrumentation in Analytical Chemistry, Volume 25, 1st Edition, Elsevier (2005).
112.
go back to reference S. Smith, “The re-equilibration of polycaproamide,” Journal of Polymer Science, 30, pp. 459–478 (1958).CrossRef S. Smith, “The re-equilibration of polycaproamide,” Journal of Polymer Science, 30, pp. 459–478 (1958).CrossRef
113.
go back to reference L.H. Buxbaum, “The degradation of poly(ethylene terephthalate),” Angewandte Chemie International Edition, 7, pp. 182–190 (1968).CrossRef L.H. Buxbaum, “The degradation of poly(ethylene terephthalate),” Angewandte Chemie International Edition, 7, pp. 182–190 (1968).CrossRef
114.
go back to reference S.V. Levchik and E.D. Weil, “A review on thermal decomposition and combustion of thermoplastic polyesters”, Polymers for Advanced Technologies, 15, pp. 691–700 (2004).CrossRef S.V. Levchik and E.D. Weil, “A review on thermal decomposition and combustion of thermoplastic polyesters”, Polymers for Advanced Technologies, 15, pp. 691–700 (2004).CrossRef
115.
go back to reference T.R. Hull, A.A. Stec, and S. Nazare, “TGA-FTIR Investigation of The Fire Retardant Mechanism of Acrylonitrile Copolymers Containing Nanofillers,” in 235th American Chemical Society National Meeting, APR 06–10, New Orleans, LA (2008). T.R. Hull, A.A. Stec, and S. Nazare, “TGA-FTIR Investigation of The Fire Retardant Mechanism of Acrylonitrile Copolymers Containing Nanofillers,” in 235th American Chemical Society National Meeting, APR 06–10, New Orleans, LA (2008).
116.
go back to reference Z. Bashir, “A critical review of the stabilisation of polyacrylonitrile,” Carbon, 29, pp. 1081–1090 (1991).CrossRef Z. Bashir, “A critical review of the stabilisation of polyacrylonitrile,” Carbon, 29, pp. 1081–1090 (1991).CrossRef
117.
go back to reference A.R. Horrocks, J. Zhang and M.E. Hall, “Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation,” Polymer International, 33, pp. 303–314 (1994).CrossRef A.R. Horrocks, J. Zhang and M.E. Hall, “Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation,” Polymer International, 33, pp. 303–314 (1994).CrossRef
118.
go back to reference N. Grassie, Developments in polymer degradation, Applied Science, Vol. 1, p. 137, London (1977). N. Grassie, Developments in polymer degradation, Applied Science, Vol. 1, p. 137, London (1977).
119.
go back to reference E. Fitzer and D. Muller, “The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor,” Carbon, 13, p. 63–69 (1975).CrossRef E. Fitzer and D. Muller, “The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor,” Carbon, 13, p. 63–69 (1975).CrossRef
120.
go back to reference L.T. Memetea, N.C. Billingham, and E.T.H. Then, “Hydroperoxides in polyacrylonitrile and their role in carbon-fibre formation,” Polymer Degradation and Stability, 47, pp. 189–201 (1995).CrossRef L.T. Memetea, N.C. Billingham, and E.T.H. Then, “Hydroperoxides in polyacrylonitrile and their role in carbon-fibre formation,” Polymer Degradation and Stability, 47, pp. 189–201 (1995).CrossRef
121.
go back to reference N. Grassie, J.N. Hay and I.C. McNeill, “Coloration in acrylonitrile and methacrylonitrile polymers,” Journal of Polymer Science, 31, p. 205 (1958).CrossRef N. Grassie, J.N. Hay and I.C. McNeill, “Coloration in acrylonitrile and methacrylonitrile polymers,” Journal of Polymer Science, 31, p. 205 (1958).CrossRef
122.
go back to reference J. Brandrup and L.H. Peebles, “On the chromophore of polyacrylonitrile. IV. Thermal oxidation of polyacrylonitrile and other nitrile-containing compounds”, Macromolecules, 1, 64–72, (1968).CrossRef J. Brandrup and L.H. Peebles, “On the chromophore of polyacrylonitrile. IV. Thermal oxidation of polyacrylonitrile and other nitrile-containing compounds”, Macromolecules, 1, 64–72, (1968).CrossRef
123.
go back to reference M.A. Geiderikh, B.E. Davydov, B.A. Krentsel, I.M. Kustanovich, L.S. Polak, A.V. Topchiev, and R.M. Voitenko, “Preparation of polymeric materials with semiconductor properties,” Journal of Polymer Science, 54, pp. 621–626 (1961).CrossRef M.A. Geiderikh, B.E. Davydov, B.A. Krentsel, I.M. Kustanovich, L.S. Polak, A.V. Topchiev, and R.M. Voitenko, “Preparation of polymeric materials with semiconductor properties,” Journal of Polymer Science, 54, pp. 621–626 (1961).CrossRef
124.
go back to reference S.C. Martin, J.J. Liggat and C.E. Snape, “In situ NMR investigation into the thermal degradation and stabilisation of PAN,” Polymer Degradation and Stability, 74, pp. 407–412 (2001).CrossRef S.C. Martin, J.J. Liggat and C.E. Snape, “In situ NMR investigation into the thermal degradation and stabilisation of PAN,” Polymer Degradation and Stability, 74, pp. 407–412 (2001).CrossRef
125.
go back to reference W.D. Woolley, “Decomposition Products of PVC for Studies of Fires”, British Polymer Journal, 3(4), pp. 186–193 (1971).CrossRef W.D. Woolley, “Decomposition Products of PVC for Studies of Fires”, British Polymer Journal, 3(4), pp. 186–193 (1971).CrossRef
126.
go back to reference . W.D. Wolley, “Studies of the dehydrochlorination of PVC in nitrogen and air”, Building Research Establishment, Current Paper CP 9/74 (1974). . W.D. Wolley, “Studies of the dehydrochlorination of PVC in nitrogen and air”, Building Research Establishment, Current Paper CP 9/74 (1974).
127.
go back to reference Purser, D.A., Fardell, P.J., Rowley, J., Vollam, S. and Bridgeman, B. An improved tube furnace method for the generation and measurement of toxic combustion products under a wide range of fire conditions. Proceedings of the 6th International Conference Flame Retardants ‘94, London, UK (26–27 Jan 1994). Interscience Communications. Purser, D.A., Fardell, P.J., Rowley, J., Vollam, S. and Bridgeman, B. An improved tube furnace method for the generation and measurement of toxic combustion products under a wide range of fire conditions. Proceedings of the 6th International Conference Flame Retardants ‘94, London, UK (26–27 Jan 1994). Interscience Communications.
128.
go back to reference K.T. Paul, “Feasibility Study to Demonstrate the Potential of Smoke Hoods in Simulated Aircraft Fire Atmospheres: Development of the fire model”, Fire and Materials, 14, pp. 43–58, (1989).CrossRef K.T. Paul, “Feasibility Study to Demonstrate the Potential of Smoke Hoods in Simulated Aircraft Fire Atmospheres: Development of the fire model”, Fire and Materials, 14, pp. 43–58, (1989).CrossRef
129.
go back to reference K. Lebek, T.R. Hull, and D. Price, “Products of burning rigid PVC burning under different fire conditions Fire and Polymers”, Materials and Concepts for Hazard Prevention, ACS Symposium Series No. 922, Oxford University Press, p. 334–347 (2005). K. Lebek, T.R. Hull, and D. Price, “Products of burning rigid PVC burning under different fire conditions Fire and Polymers”, Materials and Concepts for Hazard Prevention, ACS Symposium Series No. 922, Oxford University Press, p. 334–347 (2005).
130.
go back to reference T.R. Hull, A.A. Stec, and K.T. Paul, Proceedings of the 9th International Symposium on Fire Safety Science, 665–676 (2008). T.R. Hull, A.A. Stec, and K.T. Paul, Proceedings of the 9th International Symposium on Fire Safety Science, 665–676 (2008).
131.
go back to reference H.F. Mark, N. Bikales, C.G. Overberger, and J.I. Kroschwitz, eds., Encyclopedia of Polymer Science and Engineering, Wiley Europe, vol 1–4 (1989). H.F. Mark, N. Bikales, C.G. Overberger, and J.I. Kroschwitz, eds., Encyclopedia of Polymer Science and Engineering, Wiley Europe, vol 1–4 (1989).
132.
go back to reference E.E. Lewis and M.A. Naylor, “Pyrolysis of Polytetrafluoroethylene”. Journal of the American Chemical Society, 69, p. 1968–70 (1947).CrossRef E.E. Lewis and M.A. Naylor, “Pyrolysis of Polytetrafluoroethylene”. Journal of the American Chemical Society, 69, p. 1968–70 (1947).CrossRef
133.
134.
go back to reference E. Ackerman, Firestopping Through-Penetrations, in Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing: Seventh Volume (J.M. Klosowski, ed.), ASTM STP 1334, American Society for Testing and Materials, West Conshohocken, PA (1998). E. Ackerman, Firestopping Through-Penetrations, in Science and Technology of Building Seals, Sealants, Glazing, and Waterproofing: Seventh Volume (J.M. Klosowski, ed.), ASTM STP 1334, American Society for Testing and Materials, West Conshohocken, PA (1998).
135.
go back to reference J. Harris, A. Stevenson, “On the role of nonlinearity in the dynamic behavior of rubber components”, Rubber Chemistry and Technology, 59 (5), pp. 740-764 (2011). J. Harris, A. Stevenson, “On the role of nonlinearity in the dynamic behavior of rubber components”, Rubber Chemistry and Technology, 59 (5), pp. 740-764 (2011).
136.
go back to reference D.J. Kind and T.R. Hull, “A review of candidate fire retardants for polyisoprene,” Polymer Degradation and Stability, 97, pp. 201–213 (2012).CrossRef D.J. Kind and T.R. Hull, “A review of candidate fire retardants for polyisoprene,” Polymer Degradation and Stability, 97, pp. 201–213 (2012).CrossRef
137.
go back to reference D.W. Brazier and G.H. Nickel, “Thermoanalytical methods in vulcanizate analysis. Derivative thermogravimetric analysis”, Rubber Chemistry and Technology, 48 (4), pp. 661–677 (1975).CrossRef D.W. Brazier and G.H. Nickel, “Thermoanalytical methods in vulcanizate analysis. Derivative thermogravimetric analysis”, Rubber Chemistry and Technology, 48 (4), pp. 661–677 (1975).CrossRef
138.
go back to reference A.K. Sircar, “Identification of natural and synthetic polyisoprene vulcanizates by thermal analysis”, Rubber Chemistry and Technology., 50 (1), pp. 71–82 (1977).CrossRef A.K. Sircar, “Identification of natural and synthetic polyisoprene vulcanizates by thermal analysis”, Rubber Chemistry and Technology., 50 (1), pp. 71–82 (1977).CrossRef
139.
go back to reference S. Straus and S.L. Madorsky, “Thermal Degradation of Unvulcanized and Vulcanized Rubber in a Vacuum”, Industrial and engineering chemistry, 48 (7), pp. 1212–1219 (1956).CrossRef S. Straus and S.L. Madorsky, “Thermal Degradation of Unvulcanized and Vulcanized Rubber in a Vacuum”, Industrial and engineering chemistry, 48 (7), pp. 1212–1219 (1956).CrossRef
140.
go back to reference F. Cataldo, “Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin”, Journal of Analytical and Applied Pyrolysis, 44(2), pp. 121–130 (1998).CrossRef F. Cataldo, “Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin”, Journal of Analytical and Applied Pyrolysis, 44(2), pp. 121–130 (1998).CrossRef
141.
go back to reference S.V. Levchik and E.D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins: a review of the recent literature,” Polymer International, 53, pp. 1901–1929 (2004).CrossRef S.V. Levchik and E.D. Weil, “Thermal decomposition, combustion and flame-retardancy of epoxy resins: a review of the recent literature,” Polymer International, 53, pp. 1901–1929 (2004).CrossRef
142.
go back to reference S.C. Lin, B.J. Bulkin and E.M. Pearce, “Thermal Degradation Study Of Phenolphthalein Polycarbonate”, Journal of polymer science, Part A-1, Polymer chemistry, 19, 2773–2797, (1981). S.C. Lin, B.J. Bulkin and E.M. Pearce, “Thermal Degradation Study Of Phenolphthalein Polycarbonate”, Journal of polymer science, Part A-1, Polymer chemistry, 19, 2773–2797, (1981).
143.
go back to reference B.C. Levin, M. Paabo, J.L. Gurman and S.E. Harris, “Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires” Toxicological Sciences, 9, 236–250 (1987).CrossRef B.C. Levin, M. Paabo, J.L. Gurman and S.E. Harris, “Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires” Toxicological Sciences, 9, 236–250 (1987).CrossRef
144.
go back to reference D.A. Purser, Asphyxiant components of the fire effluents, in Fire Toxicity, (A.A Stec and T.R. Hull, eds.), Woodhead Publishing, Cambridge (2010). D.A. Purser, Asphyxiant components of the fire effluents, in Fire Toxicity, (A.A Stec and T.R. Hull, eds.), Woodhead Publishing, Cambridge (2010).
145.
go back to reference J. Wang, H. Jiang and N. Jiang, Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta, 2009, 496, 136–142CrossRef J. Wang, H. Jiang and N. Jiang, Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta, 2009, 496, 136–142CrossRef
146.
go back to reference A. Murari and A. Barzon, “Comparison of New PEEK Seals with Traditional Helicoflex for Ultra High Vacuum Applications”, Vacuum, Volume 72, Issue 3, pp. 327–334 (2003).CrossRef A. Murari and A. Barzon, “Comparison of New PEEK Seals with Traditional Helicoflex for Ultra High Vacuum Applications”, Vacuum, Volume 72, Issue 3, pp. 327–334 (2003).CrossRef
147.
go back to reference S.K. Yesodha, C.K.S. Pillai, and N. Tsutsuni, “Stable Polymeric Materials for Non-Linear Optics: A Review Based on Azobenzene Systems”, Progress in Polymer Science, Volume 29, Issue 1, pp. 45–74 (2004). S.K. Yesodha, C.K.S. Pillai, and N. Tsutsuni, “Stable Polymeric Materials for Non-Linear Optics: A Review Based on Azobenzene Systems”, Progress in Polymer Science, Volume 29, Issue 1, pp. 45–74 (2004).
148.
go back to reference M.P. Stevens, Polymer Chemistry: An Introduction, Third Edition. Oxford University Press, New York, USA (1999). M.P. Stevens, Polymer Chemistry: An Introduction, Third Edition. Oxford University Press, New York, USA (1999).
149.
go back to reference M.C. Kuo, C.M. Tsai, J.C. Huang, and M. Chen, “PEEK Composites Reinforced by Nano-Sized SiO2 and Al2O3 Particulates”, Materials Chemistry and Physics, Volume 90, pp. 185–195 (2005). M.C. Kuo, C.M. Tsai, J.C. Huang, and M. Chen, “PEEK Composites Reinforced by Nano-Sized SiO2 and Al2O3 Particulates”, Materials Chemistry and Physics, Volume 90, pp. 185–195 (2005).
150.
go back to reference L.H. Perng, C.J. Tsai, and Y.C. Ling, “Mechanism and Kinetic Modelling of PEEK Pyrolysis by TG/MS”, Polymer, Volume 40, pp. 731–732 (1999). L.H. Perng, C.J. Tsai, and Y.C. Ling, “Mechanism and Kinetic Modelling of PEEK Pyrolysis by TG/MS”, Polymer, Volume 40, pp. 731–732 (1999).
151.
go back to reference P. Patel, T. R. Hull, R. W. McCabe, D. Flath, J. Grasmeder, and M. Percy, Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies, Polymer Degradation and Stability, 95, pp. 709–718 (2010).CrossRef P. Patel, T. R. Hull, R. W. McCabe, D. Flath, J. Grasmeder, and M. Percy, Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies, Polymer Degradation and Stability, 95, pp. 709–718 (2010).CrossRef
152.
go back to reference A.-M.M. Baker and J. Mead, Thermoplastics, Chapter 1, In C.A. Harper, Modern Plastics Handbook, McGraw-Hill Professional Publishing, Ohio, USA (2000). A.-M.M. Baker and J. Mead, Thermoplastics, Chapter 1, In C.A. Harper, Modern Plastics Handbook, McGraw-Hill Professional Publishing, Ohio, USA (2000).
153.
go back to reference R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005). R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005).
154.
go back to reference F. D. Kopinke, M. Remmler, K. Mackenzie, Thermal decomposition of biodegradable polyesters-I: Poly(hydroxybutyric acid). Polym. Degrad. Stab., 52, 25–38, 1996.CrossRef F. D. Kopinke, M. Remmler, K. Mackenzie, Thermal decomposition of biodegradable polyesters-I: Poly(hydroxybutyric acid). Polym. Degrad. Stab., 52, 25–38, 1996.CrossRef
155.
go back to reference H. Morikawa, R.H. Marchessault, Pyrolysis of bacterial polyalkanoates, Canadian Journal of Chemistry 59, 2306,1981CrossRef H. Morikawa, R.H. Marchessault, Pyrolysis of bacterial polyalkanoates, Canadian Journal of Chemistry 59, 2306,1981CrossRef
156.
go back to reference J.L. Gay-Lussac, Ann. Chim. Phys., 18, p. 211 (1821). J.L. Gay-Lussac, Ann. Chim. Phys., 18, p. 211 (1821).
157.
go back to reference SRI Consulting, Report on Flame Retardants, Published December 2008 SRI Consulting, Report on Flame Retardants, Published December 2008
158.
go back to reference T.R. Hull, A. Witkowski, L.A. Hollingbery, “Fire retardant action of mineral fillers”, Polymer Degradation and Stability, 96, pp. 1462–1469 (2011).CrossRef T.R. Hull, A. Witkowski, L.A. Hollingbery, “Fire retardant action of mineral fillers”, Polymer Degradation and Stability, 96, pp. 1462–1469 (2011).CrossRef
159.
go back to reference A. Bergman, A. Ryden, R.J. Law, J. de Boer, A. Covaci, M. Alaee, L. Birnbaum, M. Petreas, M. Rose, S. Sakai, N. Van den Eede and I. van der Veen, “A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals” Environment International, 49, 57–82, (2012).CrossRef A. Bergman, A. Ryden, R.J. Law, J. de Boer, A. Covaci, M. Alaee, L. Birnbaum, M. Petreas, M. Rose, S. Sakai, N. Van den Eede and I. van der Veen, “A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals” Environment International, 49, 57–82, (2012).CrossRef
160.
go back to reference A. Schnipper, L. Smith-Hansen, and S.E. Thomsen, “Reduced Combustion Efficiency of Chlorinated Compounds Resulting In Higher Yields of Carbon Monoxide”, Fire and Materials, 19, pp. 61–64, (1995).CrossRef A. Schnipper, L. Smith-Hansen, and S.E. Thomsen, “Reduced Combustion Efficiency of Chlorinated Compounds Resulting In Higher Yields of Carbon Monoxide”, Fire and Materials, 19, pp. 61–64, (1995).CrossRef
161.
go back to reference V. Babushok, W. Tsang, G.T. Linteris, and D. Reinelt, “Chemical Limits to Flame Inhibition”, Combustion and Flame, 115, pp. 551–560 (1998).CrossRef V. Babushok, W. Tsang, G.T. Linteris, and D. Reinelt, “Chemical Limits to Flame Inhibition”, Combustion and Flame, 115, pp. 551–560 (1998).CrossRef
162.
go back to reference M.I. Nelson and J. Brindley, “Polymer combustion: Effects of flame emissivity” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358, 3655–3673 (2000).MATH M.I. Nelson and J. Brindley, “Polymer combustion: Effects of flame emissivity” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358, 3655–3673 (2000).MATH
163.
go back to reference J.G. Quintiere, Principles of Fire Behaviour, Delmar Publishers, New York, USA, (1997). J.G. Quintiere, Principles of Fire Behaviour, Delmar Publishers, New York, USA, (1997).
164.
go back to reference . H. Zhang, Fire-Safe Polymers and Polymer Composites, US Department of Transport. Report Number: DOT/FAA/AR-04/11 (2004). . H. Zhang, Fire-Safe Polymers and Polymer Composites, US Department of Transport. Report Number: DOT/FAA/AR-04/11 (2004).
165.
go back to reference P. Patel, T.R Hull, and Colin Moffatt, “PEEK polymer flammability and the inadequacy of the UL‐94 classification,” Fire and Materials, 36, pp. 185–201 (2012). P. Patel, T.R Hull, and Colin Moffatt, “PEEK polymer flammability and the inadequacy of the UL‐94 classification,” Fire and Materials, 36, pp. 185–201 (2012).
166.
go back to reference V. Babrauskas, “Fire Test Methods for Evaluation of Fire-Retardant Efficacy in Polymeric Materials”, Chapter 3, in Fire Retardancy of Polymeric Materials (A.F. Grand and C.A. Wilkie, eds.), CRC Press, New York, USA (2000). V. Babrauskas, “Fire Test Methods for Evaluation of Fire-Retardant Efficacy in Polymeric Materials”, Chapter 3, in Fire Retardancy of Polymeric Materials (A.F. Grand and C.A. Wilkie, eds.), CRC Press, New York, USA (2000).
167.
go back to reference K.T. Paul and S.D. Christian, “Standard flaming ignition sources for upholstered composites, furniture and bed assembly,” Journal of Fire Sciences, 5(3), pp. 178–211 (1987).CrossRef K.T. Paul and S.D. Christian, “Standard flaming ignition sources for upholstered composites, furniture and bed assembly,” Journal of Fire Sciences, 5(3), pp. 178–211 (1987).CrossRef
168.
go back to reference D. Hopkins Jr and J.G. Quintiere, “Materials fire properties and predictions for thermoplastics”, Fire Safety Journal, 26, pp. 241–268 (1996).CrossRef D. Hopkins Jr and J.G. Quintiere, “Materials fire properties and predictions for thermoplastics”, Fire Safety Journal, 26, pp. 241–268 (1996).CrossRef
169.
go back to reference D.J. Rasbash, D.D. Drysdale, and D. Deepak, “Critical heat and mass transfer at pilot ignition and extinction of a material”, Fire Safety Journal, 10, pp. 1–10 (1986).CrossRef D.J. Rasbash, D.D. Drysdale, and D. Deepak, “Critical heat and mass transfer at pilot ignition and extinction of a material”, Fire Safety Journal, 10, pp. 1–10 (1986).CrossRef
170.
go back to reference H.E. Thomson, D.D. Drysdale, and C.L. Beyler, “An experimental evaluation of critical surface temperatures as a criterion for piloted ignition of solid fuels”, Fire Safety Journal, 13, pp. 185–196 (1988).CrossRef H.E. Thomson, D.D. Drysdale, and C.L. Beyler, “An experimental evaluation of critical surface temperatures as a criterion for piloted ignition of solid fuels”, Fire Safety Journal, 13, pp. 185–196 (1988).CrossRef
171.
go back to reference E. Mikkola and I.S. Wichman, “On the thermal ignition of combustible materials”, Fire and Materials, 14, pp. 87–96 (1989).CrossRef E. Mikkola and I.S. Wichman, “On the thermal ignition of combustible materials”, Fire and Materials, 14, pp. 87–96 (1989).CrossRef
172.
go back to reference T. Kashiwagi, “Radiative ignition mechanism of solid fuels”, Fire Safety Journal, 3, pp. 185–200 (1981).CrossRef T. Kashiwagi, “Radiative ignition mechanism of solid fuels”, Fire Safety Journal, 3, pp. 185–200 (1981).CrossRef
173.
go back to reference V. Babrauskas, Ignition Handbook, Fire Science Publishers, Issaquah WA, USA and SFPE, USA (2003). V. Babrauskas, Ignition Handbook, Fire Science Publishers, Issaquah WA, USA and SFPE, USA (2003).
174.
go back to reference R.E. Lyon, “Plastics and Rubber”, in Handbook of Building Materials for Fire Protection, (C.A. Harper, ed), McGraw-Hill, chap 3, 3.1-3.51 (2004). R.E. Lyon, “Plastics and Rubber”, in Handbook of Building Materials for Fire Protection, (C.A. Harper, ed), McGraw-Hill, chap 3, 3.1-3.51 (2004).
175.
go back to reference R.E. Lyon, R.N. Walters, and S.I. Stoliarov, “Thermal Analysis of Polymer Flammability”, Presented at 228th ACS Meeting Philadelphia (2004). R.E. Lyon, R.N. Walters, and S.I. Stoliarov, “Thermal Analysis of Polymer Flammability”, Presented at 228th ACS Meeting Philadelphia (2004).
176.
go back to reference A. Tewarson, “Generation of Heat and Chemical Compounds in Fires”, in The SFPE Handbook of Fire Protection Engineering, 3rd edition (P.J. DiNenno, D.D. Drysdale, C.L. Beyler, W.D. Walton, R.L.P Custer, J.R. Hall Jr and J.M. Watts Jr, eds), National Fire Protection Association, Inc., chap 3.4,3-82-3-161 (2002). A. Tewarson, “Generation of Heat and Chemical Compounds in Fires”, in The SFPE Handbook of Fire Protection Engineering, 3rd edition (P.J. DiNenno, D.D. Drysdale, C.L. Beyler, W.D. Walton, R.L.P Custer, J.R. Hall Jr and J.M. Watts Jr, eds), National Fire Protection Association, Inc., chap 3.4,3-82-3-161 (2002).
177.
go back to reference M. Sibulkin and M.W. Little, “Propagation and extinction of downward burning fires”, Combustion Flame, 31, pp. 197–208 (1978).CrossRef M. Sibulkin and M.W. Little, “Propagation and extinction of downward burning fires”, Combustion Flame, 31, pp. 197–208 (1978).CrossRef
178.
go back to reference IEC 60695-11-10 “Fire hazard testing - Part 11–10: Test flames - 50 W horizontal and vertical flame test methods,” (1999). IEC 60695-11-10 “Fire hazard testing - Part 11–10: Test flames - 50 W horizontal and vertical flame test methods,” (1999).
179.
go back to reference V. Babrauskas, “Ignition: A Century of Research and an Assessment of our Current Status”, Journal of Fire Protection Engineering, 17(3), pp. 165–183 (2007).CrossRef V. Babrauskas, “Ignition: A Century of Research and an Assessment of our Current Status”, Journal of Fire Protection Engineering, 17(3), pp. 165–183 (2007).CrossRef
180.
go back to reference ISO 5660–1 “Fire tests – Reaction to fire – Part 1: Rate of heat release from building products (cone calorimeter method)”, (1993). ISO 5660–1 “Fire tests – Reaction to fire – Part 1: Rate of heat release from building products (cone calorimeter method)”, (1993).
181.
go back to reference A.B. Morgan and M. Bundy, “Cone Calorimeter Analysis of UL-94 V-Rated Plastics”, Fire and Materials, 31, pp. 257–283 (2007).CrossRef A.B. Morgan and M. Bundy, “Cone Calorimeter Analysis of UL-94 V-Rated Plastics”, Fire and Materials, 31, pp. 257–283 (2007).CrossRef
182.
go back to reference Y. Wang, F. Zhang, X. Chen, Y. Jin, and J. Zhang, “Burning and Dripping Behaviours of Polymers under the UL-94 Vertical Burn Test Conditions”, Fire and Materials, 34, pp. 203–215 (2009). Y. Wang, F. Zhang, X. Chen, Y. Jin, and J. Zhang, “Burning and Dripping Behaviours of Polymers under the UL-94 Vertical Burn Test Conditions”, Fire and Materials, 34, pp. 203–215 (2009).
183.
go back to reference M. Bundy and T. Ohlemiller, “Bench-Scale Flammability Measures for Electronic Equipment”, National Institute of Standards and Technology, NISTIR 7031 (2003). M. Bundy and T. Ohlemiller, “Bench-Scale Flammability Measures for Electronic Equipment”, National Institute of Standards and Technology, NISTIR 7031 (2003).
184.
go back to reference S. Hong, J. Yang, S. Ahn, Y. Mun, and G. Lee, “Flame Retardant Performance of Various UL-94 Classified Materials Exposed to External Ignition Sources”, Fire and Materials, 28, pp. 25–31 (2004).CrossRef S. Hong, J. Yang, S. Ahn, Y. Mun, and G. Lee, “Flame Retardant Performance of Various UL-94 Classified Materials Exposed to External Ignition Sources”, Fire and Materials, 28, pp. 25–31 (2004).CrossRef
185.
go back to reference B. Schartel and U. Braun, “Comprehensive Fire Behaviour Assessment of Polymeric Materials Based on Cone Calorimeter Investigations”, e-Polymers, Article 13, pp. 1–14 (2003). B. Schartel and U. Braun, “Comprehensive Fire Behaviour Assessment of Polymeric Materials Based on Cone Calorimeter Investigations”, e-Polymers, Article 13, pp. 1–14 (2003).
186.
go back to reference B. Schartel and T.R. Hull, “Application of Cone Calorimetry to the Development of Materials with Improved Fire Performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRef B. Schartel and T.R. Hull, “Application of Cone Calorimetry to the Development of Materials with Improved Fire Performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRef
187.
go back to reference J.G. Quintiere, B.P. Downey, and R.E. Lyon, “An Investigation of the Vertical Bunsen Burner Test for Flammability of Plastics”, US Department of Transport, Report Number: DOT/FAA/AR-TN (2010). J.G. Quintiere, B.P. Downey, and R.E. Lyon, “An Investigation of the Vertical Bunsen Burner Test for Flammability of Plastics”, US Department of Transport, Report Number: DOT/FAA/AR-TN (2010).
188.
go back to reference ISO 4589–2 “Plastics – Determination of burning behaviour by oxygen index – Part-2: Ambient temperature test”, (1996). ISO 4589–2 “Plastics – Determination of burning behaviour by oxygen index – Part-2: Ambient temperature test”, (1996).
189.
go back to reference ISO 5660–2 “Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 2: Smoke production rate (dynamic measurement)”, (2002). ISO 5660–2 “Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 2: Smoke production rate (dynamic measurement)”, (2002).
190.
go back to reference B. Schartel and T.R. Hull, “Application of cone calorimetry to the development of materials with improved fire performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRef B. Schartel and T.R. Hull, “Application of cone calorimetry to the development of materials with improved fire performance”, Fire and Materials, 31, pp. 327–354 (2007).CrossRef
191.
go back to reference R.E. Lyon, in Recent Advances in Flame Retardancy of Polymers, vol. 13, (M. Lewin, ed.), BCC, Inc., pp. 14-25 (2002) R.E. Lyon, in Recent Advances in Flame Retardancy of Polymers, vol. 13, (M. Lewin, ed.), BCC, Inc., pp. 14-25 (2002)
192.
go back to reference R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef R.E. Lyon and R.N. Walters, “Pyrolysis combustion flow calorimetry”, Journal of Analytical and Applied Pyrolysis, 71, pp. 27–46 (2004).CrossRef
193.
go back to reference B. Schartel, K.H. Pawlowski, and R.E. Lyon, “Pyrolysis combustion flow calorimeter: A tool to assess flame retarded PC/ABS materials?”, Thermochimica Acta, 462, pp. 1–14 (2007).CrossRef B. Schartel, K.H. Pawlowski, and R.E. Lyon, “Pyrolysis combustion flow calorimeter: A tool to assess flame retarded PC/ABS materials?”, Thermochimica Acta, 462, pp. 1–14 (2007).CrossRef
194.
go back to reference R.E. Lyon, R.N. Walters, M. Beach, and F.P. Schall, “Flammability Screening of Plastics Containing Flame Retardant Additives”, ADDITIVES 2007, 16th International Conference, San Antonio, TX (2007). R.E. Lyon, R.N. Walters, M. Beach, and F.P. Schall, “Flammability Screening of Plastics Containing Flame Retardant Additives”, ADDITIVES 2007, 16th International Conference, San Antonio, TX (2007).
195.
go back to reference D.W. Van Krevelen, Properties of Polymers. Chapter 21 – Thermal Decomposition, 4th Edition, Elsevier Science Publishers, Amsterdam (2009). D.W. Van Krevelen, Properties of Polymers. Chapter 21 – Thermal Decomposition, 4th Edition, Elsevier Science Publishers, Amsterdam (2009).
196.
go back to reference R. Walters and R.E. Lyon, Calculating Polymer Flammability from Molar Group Contributions, DOT/FAA/AR-01/31 (2001). R. Walters and R.E. Lyon, Calculating Polymer Flammability from Molar Group Contributions, DOT/FAA/AR-01/31 (2001).
197.
go back to reference P. Patel, Doctoral Thesis, University of Central Lancashire, UK (2011). P. Patel, Doctoral Thesis, University of Central Lancashire, UK (2011).
198.
go back to reference H. Zhang, Fire-Safe Polymers, and Polymer Composites, US Department Of Transport, Report Number: DOT/FAA/AR-04/11, Federal Aviation Administration (2004). H. Zhang, Fire-Safe Polymers, and Polymer Composites, US Department Of Transport, Report Number: DOT/FAA/AR-04/11, Federal Aviation Administration (2004).
199.
go back to reference R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005). R.E. Lyon and M.L. Janssens, Polymer Flammability, US Department of Transport, Report Number: DOT/FAA/AR-05/14 (2005).
200.
go back to reference P. Patel, T.R. Hull, R.E. Lyon, S.I. Stoliarov, R.N. Walters, S. Crowley, and N. Safronava, “Investigation of the Thermal Decomposition and Flammability of PEEK and its Carbon and Glass-Fibre Composites”, Polymer Degradation and Stability, In Press (2011). P. Patel, T.R. Hull, R.E. Lyon, S.I. Stoliarov, R.N. Walters, S. Crowley, and N. Safronava, “Investigation of the Thermal Decomposition and Flammability of PEEK and its Carbon and Glass-Fibre Composites”, Polymer Degradation and Stability, In Press (2011).
201.
go back to reference R.E. Lyon, “Solid-State Thermochemistry of Flaming Combustion,” in Fire Retardancy of Polymeric Materials (C.A. Wilkie and A.F Grand, eds.), Marcel Dekker, Inc., NY (2000). R.E. Lyon, “Solid-State Thermochemistry of Flaming Combustion,” in Fire Retardancy of Polymeric Materials (C.A. Wilkie and A.F Grand, eds.), Marcel Dekker, Inc., NY (2000).
202.
go back to reference R.E. Lyon, “Heat Release Capacity,” Proceedings of the 7th International Conference on Fire and Materials, San Francisco, CA, pp. 285–300 (2001). R.E. Lyon, “Heat Release Capacity,” Proceedings of the 7th International Conference on Fire and Materials, San Francisco, CA, pp. 285–300 (2001).
203.
go back to reference R.E. Lyon, “Heat Release Kinetics,” Fire and Materials, 24, pp. 179–186 (2000).CrossRef R.E. Lyon, “Heat Release Kinetics,” Fire and Materials, 24, pp. 179–186 (2000).CrossRef
204.
go back to reference R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” Proceedings 42nd International SAMPE Symposium and Exhibition, 42(2), pp. 1335–1344 (1997). R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” Proceedings 42nd International SAMPE Symposium and Exhibition, 42(2), pp. 1335–1344 (1997).
205.
go back to reference R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” NISTIR 5904 (K. Beall, ed.), pp. 89–90 (1996). R.N. Walters and R.E. Lyon, “A Microscale Combustion Calorimeter for Determining Flammability Parameters of Materials,” NISTIR 5904 (K. Beall, ed.), pp. 89–90 (1996).
206.
go back to reference R.E. Lyon and R.N. Walters, U.S. Patent 5981290, Microscale Combustion Calorimeter, 11/09/1999. R.E. Lyon and R.N. Walters, U.S. Patent 5981290, Microscale Combustion Calorimeter, 11/09/1999.
207.
go back to reference R.N. Walters and R.E. Lyon, “Molar Group Contributions to Polymer Flammability,” PMSE Preprints, 83, 86, ACS National Meeting, Washington, D.C. (August 2000). R.N. Walters and R.E. Lyon, “Molar Group Contributions to Polymer Flammability,” PMSE Preprints, 83, 86, ACS National Meeting, Washington, D.C. (August 2000).
208.
go back to reference R.N. Walters and R.E. Lyon, “Calculating Polymer Flammability from Molar Group Contributions,” Proceedings of the BCC Conference on Flame Retardancy of Polymeric Materials, Stamford, CT (May 22–24, 2000). R.N. Walters and R.E. Lyon, “Calculating Polymer Flammability from Molar Group Contributions,” Proceedings of the BCC Conference on Flame Retardancy of Polymeric Materials, Stamford, CT (May 22–24, 2000).
Metadata
Title
Thermal Decomposition of Polymeric Materials
Authors
Artur Witkowski
Anna A. Stec
T. Richard Hull
Copyright Year
2016
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_7