Skip to main content
Top

2019 | OriginalPaper | Chapter

Thermal Energy Storage Systems

Authors : Ethan Mohseni Languri, Glenn Cunningham

Published in: Advances in Sustainable Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One way of improving resiliency in industrial and energy-intensive infrastructures, particularly those with renewable energy production, is combining the grid with energy storage systems. Among various forms of energy, thermal energy is extensively available such as waste heat energy in manufacturing systems or solar thermal energy that can be harvested in a sustainable form. The concept behind thermal energy storage (TES) systems is to store thermal energy in a medium for a later use. TES systems can be categorized into three main sections of sensible, Latent and thermo-chemical TES systems. The poor rate of storage and release of thermal energy, lack or reliability and maturity, and limitation in storage capacity are the main drawbacks of existing TES systems, impede their real-world use in industry. This chapter provides an introduction to these TES systems and provides a summary of researchers’ efforts to overcome the challenges exist in utilizing these TES systems in industry. Furthermore, the details of potential application of TES systems are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agyenim F, Hewitt N, Eames P, Smyth M (2010a) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628 Agyenim F, Hewitt N, Eames P, Smyth M (2010a) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628
go back to reference Agyenim F, Eames P, Smith M (2010b) Heat transfer enhancement in medium temperature thermal storage system using a multi tube heat transfer array. Renew Energy 35:198–207 Agyenim F, Eames P, Smith M (2010b) Heat transfer enhancement in medium temperature thermal storage system using a multi tube heat transfer array. Renew Energy 35:198–207
go back to reference Akgun M, Aydin O, Kaygusuz K (2007) Experimental study on melting/solidification characteristics of paraffin as PCM. Energy Convers Manag 48:669–678 Akgun M, Aydin O, Kaygusuz K (2007) Experimental study on melting/solidification characteristics of paraffin as PCM. Energy Convers Manag 48:669–678
go back to reference Alkan C, Sari A (2008) Fatty acid/poly (methyl methacrylate)(PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82(2):118–124CrossRef Alkan C, Sari A (2008) Fatty acid/poly (methyl methacrylate)(PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82(2):118–124CrossRef
go back to reference Babaei H, Keblinski P, Khodadadi JM (2013) Improvement in thermal conductivity of paraffin by adding high aspect-ratio carbon-based nano-fillers. Phys Lett A 377(19):1358–1361CrossRef Babaei H, Keblinski P, Khodadadi JM (2013) Improvement in thermal conductivity of paraffin by adding high aspect-ratio carbon-based nano-fillers. Phys Lett A 377(19):1358–1361CrossRef
go back to reference Bahraseman H, Languri E, East J (2017) Fast charging of thermal energy storage systems enabled by phase change materials mixed with expanded graphite. Int J Heat Mass Transf 109:1052–1058CrossRef Bahraseman H, Languri E, East J (2017) Fast charging of thermal energy storage systems enabled by phase change materials mixed with expanded graphite. Int J Heat Mass Transf 109:1052–1058CrossRef
go back to reference Balasubramanian G, Ghommem M, Hajj MR et al (2010) Modeling of thermochemical energy storage by salt hydrates. Int J Heat Mass Transfer 53:5700–5706CrossRef Balasubramanian G, Ghommem M, Hajj MR et al (2010) Modeling of thermochemical energy storage by salt hydrates. Int J Heat Mass Transfer 53:5700–5706CrossRef
go back to reference Bales C (2006) Solar energy research center (SERC). Chemical and sorption heat storage. In: Proceedings of DANVAK seminar, DANVAK seminar (solar heating systems–combisystems–heat storage) Bales C (2006) Solar energy research center (SERC). Chemical and sorption heat storage. In: Proceedings of DANVAK seminar, DANVAK seminar (solar heating systems–combisystems–heat storage)
go back to reference Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695CrossRef Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695CrossRef
go back to reference Cabeza LF, Sole C, Castell A, Oro E, Gil A (2012) Review of solar thermal storage techniques and associated heat transfer technologies. Proc IEEE 100(2):525–538CrossRef Cabeza LF, Sole C, Castell A, Oro E, Gil A (2012) Review of solar thermal storage techniques and associated heat transfer technologies. Proc IEEE 100(2):525–538CrossRef
go back to reference Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 31(110):163–172CrossRef Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 31(110):163–172CrossRef
go back to reference Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, Yu ZT, Cheng GH, Hu YC, Cen KF (2013) Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energy Fuels 27(7):4041–4047CrossRef Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, Yu ZT, Cheng GH, Hu YC, Cen KF (2013) Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energy Fuels 27(7):4041–4047CrossRef
go back to reference Hadorn J-C (ed) (2005) Thermal energy storage for solar and low energy buildings—state of the art. Servei de Publicacions de la Universitat de Lleida Hadorn J-C (ed) (2005) Thermal energy storage for solar and low energy buildings—state of the art. Servei de Publicacions de la Universitat de Lleida
go back to reference Kato Y (2007) Chemical energy conversion technologies for efficient energy use. In: Paksoy H (ed) Thermal energy storage for sustainable energy consumption. Springer, pp 377–391 Kato Y (2007) Chemical energy conversion technologies for efficient energy use. In: Paksoy H (ed) Thermal energy storage for sustainable energy consumption. Springer, pp 377–391
go back to reference Kato Y, Takahashi R, Sekiguchi T et al (2009) Study on medium-temperature chemical heat storage using mixed hydroxides. Int J Refrigeration 32:661–666CrossRef Kato Y, Takahashi R, Sekiguchi T et al (2009) Study on medium-temperature chemical heat storage using mixed hydroxides. Int J Refrigeration 32:661–666CrossRef
go back to reference Kawasaki H, Watanabe T, Kanzawa A (1999) Proposal of a chemical heat pump with paraldehyde depolymerization for cooling system. Appl Therm Eng 19:133–143CrossRef Kawasaki H, Watanabe T, Kanzawa A (1999) Proposal of a chemical heat pump with paraldehyde depolymerization for cooling system. Appl Therm Eng 19:133–143CrossRef
go back to reference Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef Kim S, Drzal LT (2009) High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells 93(1):136–142CrossRef
go back to reference Kumar A, Shukla SK (2015) A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 74:462–469CrossRef Kumar A, Shukla SK (2015) A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia 74:462–469CrossRef
go back to reference Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36:2083–2092 Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36:2083–2092
go back to reference Languri EM, Aigbotsua CO, Alvarado JL (2013a) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50(1):1008–1014CrossRef Languri EM, Aigbotsua CO, Alvarado JL (2013a) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50(1):1008–1014CrossRef
go back to reference Languri E, Aigbotsua C, Alvarado J (2013b) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50:1008–1014CrossRef Languri E, Aigbotsua C, Alvarado J (2013b) Latent thermal energy storage system using phase change material in corrugated enclosures. Appl Therm Eng 50:1008–1014CrossRef
go back to reference Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16(4):2094–2101CrossRef Li M, Wu Z (2012) A review of intercalation composite phase change material: preparation, structure and properties. Renew Sustain Energy Rev 16(4):2094–2101CrossRef
go back to reference Liu Z, Zou R, Lin Z, Gui X, Chen R, Lin J, Shang Y, Cao A (2013) Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett 13(9):4028–4035CrossRef Liu Z, Zou R, Lin Z, Gui X, Chen R, Lin J, Shang Y, Cao A (2013) Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett 13(9):4028–4035CrossRef
go back to reference Murali G, Mayilsamy K (2014–2015) An overview of PCM usage to enhance solar water heating system. Int J Chem Tech Res 7(4):1802–1807 Murali G, Mayilsamy K (2014–2015) An overview of PCM usage to enhance solar water heating system. Int J Chem Tech Res 7(4):1802–1807
go back to reference Posern K, Kaps C (2008) Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates. J Therm Anal Calorim 92:905–909CrossRef Posern K, Kaps C (2008) Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates. J Therm Anal Calorim 92:905–909CrossRef
go back to reference Sarı A, Karaipekli A (2012) Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. Appl Therm Eng 31(37):208–216CrossRef Sarı A, Karaipekli A (2012) Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. Appl Therm Eng 31(37):208–216CrossRef
go back to reference Seeniraj RV, Velraj R, Narasimhan NL (2002) Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf 38:409–417 Seeniraj RV, Velraj R, Narasimhan NL (2002) Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf 38:409–417
go back to reference Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef
go back to reference Stach H, Mugele J, Janchen J et al (2005) Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorp J Int Adsorp Soc 11:393–404CrossRef Stach H, Mugele J, Janchen J et al (2005) Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorp J Int Adsorp Soc 11:393–404CrossRef
go back to reference Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):1MathSciNetCrossRef Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):1MathSciNetCrossRef
go back to reference van Essen VM, Zondag HA, Gores JC et al (2009) Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J Solar Energy Eng Trans ASME 131:041014CrossRef van Essen VM, Zondag HA, Gores JC et al (2009) Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J Solar Energy Eng Trans ASME 131:041014CrossRef
go back to reference Visscher K, Veldhuis JBJ, Oonk HAJ et al (2004) Compacte chemische seizoensopslag van zonnewarmte ECN-C-04-074 Visscher K, Veldhuis JBJ, Oonk HAJ et al (2004) Compacte chemische seizoensopslag van zonnewarmte ECN-C-04-074
go back to reference Visscher K, Veldhuis JBJ (2005) Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system. In: Proceedings of the 9th international building performance simulation association Visscher K, Veldhuis JBJ (2005) Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system. In: Proceedings of the 9th international building performance simulation association
go back to reference Wang Y, Xia TD, Feng HX, Zhang H (2011) Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew Energy 36(6):1814–1820CrossRef Wang Y, Xia TD, Feng HX, Zhang H (2011) Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew Energy 36(6):1814–1820CrossRef
go back to reference Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14(38):13233–13238CrossRef Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14(38):13233–13238CrossRef
go back to reference Wang Y, Tang B, Zhang S (2013) Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv Funct Mater 23(35):4354–4360CrossRef Wang Y, Tang B, Zhang S (2013) Single-walled carbon nanotube/phase change material composites: sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv Funct Mater 23(35):4354–4360CrossRef
go back to reference Wu S, Zhu D, Zhang X, Huang J (2010) Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels 24(3):1894–1898CrossRef Wu S, Zhu D, Zhang X, Huang J (2010) Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels 24(3):1894–1898CrossRef
go back to reference Yang X, Yuan Y, Zhang N, Cao X, Liu C (2014) Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy 31(99):259–266CrossRef Yang X, Yuan Y, Zhang N, Cao X, Liu C (2014) Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy 31(99):259–266CrossRef
go back to reference Zhang Y, Faghri A (1996) Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 3:119–127 Zhang Y, Faghri A (1996) Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 3:119–127
go back to reference Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012a) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431CrossRef Zhang Z, Zhang N, Peng J, Fang X, Gao X, Fang Y (2012a) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91(1):426–431CrossRef
go back to reference Zhang S, Tao Q, Wang Z, Zhang Z (2012b) Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper. J Mater Chem 22(38):20166–20169CrossRef Zhang S, Tao Q, Wang Z, Zhang Z (2012b) Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper. J Mater Chem 22(38):20166–20169CrossRef
go back to reference Zhao J, Alvarado JL, Languri EM, Wang C (2012) Numerical simulation of thermal performance of a high aspect ratio thermal energy storage device. In: ASME 2012 international mechanical engineering congress and exposition 9 November 2012. American Society of Mechanical Engineers, pp 1815–1821 Zhao J, Alvarado JL, Languri EM, Wang C (2012) Numerical simulation of thermal performance of a high aspect ratio thermal energy storage device. In: ASME 2012 international mechanical engineering congress and exposition 9 November 2012. American Society of Mechanical Engineers, pp 1815–1821
go back to reference Zhong Y, Li S, Wei X, Liu Z, Guo Q, Shi J, Liu L (2010) Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 48(1):300–304CrossRef Zhong Y, Li S, Wei X, Liu Z, Guo Q, Shi J, Liu L (2010) Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 48(1):300–304CrossRef
Metadata
Title
Thermal Energy Storage Systems
Authors
Ethan Mohseni Languri
Glenn Cunningham
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05636-0_9