Skip to main content
Top
Published in: Journal of Materials Science 24/2019

28-08-2019 | Composites & nanocomposites

Thermal-resistant, shear-stable and salt-tolerant polyacrylamide/surface-modified graphene oxide composite

Authors: Yahui Lyu, Chenglin Gu, Jiaping Tao, Xue Yao, Guang Zhao, Caili Dai

Published in: Journal of Materials Science | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The temperature resistance, shear stability and salinity tolerance of the polymer are crucial as a chemical agent for enhanced oil recovery (EOR) involving high-temperature and high-salinity reservoirs. In this work, triethoxyvinylsilane (VTEO) molecules were first covalently bound to the surface of the graphene oxide (GO) to synthesize the sGO, and then, the sGO was copolymerized with acrylamide (AM) to prepare the PAM/sGO composite. The composite was also characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy and thermogravimetric analysis. Additionally, temperature resistance, shear stability and salinity tolerance were evaluated to determine the performance of the composite. These results indicate that the synthesized composite exhibits novel thermal-resistant, shear-stable and salinity-tolerant performance as a new EOR agent in high-temperature and high-salinity reservoirs. Furthermore, the stability mechanisms of the composite were revealed through the analysis of the interactions between GO sheets and polymer matrix in the microstructure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tripathy T, De Ranjan B (2006) Flocculation: a new way to treat the waste water. J Phys Sci 10:93–127 Tripathy T, De Ranjan B (2006) Flocculation: a new way to treat the waste water. J Phys Sci 10:93–127
2.
go back to reference Jung JC, Zhang K, Bo HC, Choi HJ (2013) Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J Appl Polym Sci 127:4833–4839CrossRef Jung JC, Zhang K, Bo HC, Choi HJ (2013) Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery. J Appl Polym Sci 127:4833–4839CrossRef
3.
go back to reference Tha A, Agrawal S, Mishra A, Rai JP (2001) Synthesis, characterization and flocculation efficiency of poly(acrylamide-co-acrylic acid) in tannery waste-water. Iran Polym J 10:85–90 Tha A, Agrawal S, Mishra A, Rai JP (2001) Synthesis, characterization and flocculation efficiency of poly(acrylamide-co-acrylic acid) in tannery waste-water. Iran Polym J 10:85–90
4.
go back to reference You Q, Wang K, Tang Y, Zhao G, Liu Y, Zhao M, Li Y, Dai C (2015) Study of a novel self-thickening polymer for improved oil recovery. Ind Eng Chem Res 54:9667–9674CrossRef You Q, Wang K, Tang Y, Zhao G, Liu Y, Zhao M, Li Y, Dai C (2015) Study of a novel self-thickening polymer for improved oil recovery. Ind Eng Chem Res 54:9667–9674CrossRef
5.
go back to reference Sabhapondit A, Borthakur A, Haque I (2003) Characterization of acrylamide polymers for enhanced oil recovery. J Appl Polym Sci 87:1869–1878CrossRef Sabhapondit A, Borthakur A, Haque I (2003) Characterization of acrylamide polymers for enhanced oil recovery. J Appl Polym Sci 87:1869–1878CrossRef
6.
go back to reference Ye Z, Gou G, Gou S, Jiang W, Liu T (2013) Synthesis and characterization of a water-soluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical. J Appl Polym Sci 128:2003–2011 Ye Z, Gou G, Gou S, Jiang W, Liu T (2013) Synthesis and characterization of a water-soluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical. J Appl Polym Sci 128:2003–2011
7.
go back to reference Pu WF, Liu R, Wang K, Li K, Yan Z, Li B, Zhao L (2015) Water soluble core-shell hyperbranched polymers for enhanced oil recovery. Ind Eng Chem Res 54:798–807CrossRef Pu WF, Liu R, Wang K, Li K, Yan Z, Li B, Zhao L (2015) Water soluble core-shell hyperbranched polymers for enhanced oil recovery. Ind Eng Chem Res 54:798–807CrossRef
8.
go back to reference Dai C, Xu Z, Wu Y, Zou C, Wu X, Wang T, Xu G, Zhao M (2017) Design and study of a novel thermal-resistant and shear-stable amphoteric polyacrylamide in high-salinity solution. Polymers 9(7):296CrossRef Dai C, Xu Z, Wu Y, Zou C, Wu X, Wang T, Xu G, Zhao M (2017) Design and study of a novel thermal-resistant and shear-stable amphoteric polyacrylamide in high-salinity solution. Polymers 9(7):296CrossRef
9.
go back to reference Abidin AZ, Puspasari T, Nugroho WA (2012) Polymers for enhanced oil recovery technology. Proc Chem 4:11–16CrossRef Abidin AZ, Puspasari T, Nugroho WA (2012) Polymers for enhanced oil recovery technology. Proc Chem 4:11–16CrossRef
10.
go back to reference Caulfield MJ, Qiao GG, Solomon DH (2002) Some aspects of the properties and degradation of polyacrylamides. Chem Rev 102:3067–3084CrossRef Caulfield MJ, Qiao GG, Solomon DH (2002) Some aspects of the properties and degradation of polyacrylamides. Chem Rev 102:3067–3084CrossRef
11.
go back to reference Yuan R, Li Y, Li C, Fang H, Wang W (2013) Study about how the metal cationic ions affect the properties of partially hydrolyzed hydrophobically modified polyacrylamide (HMHPAM) in aqueous solution. Colloids Surf A Physicochem Eng Asp 434:16–24CrossRef Yuan R, Li Y, Li C, Fang H, Wang W (2013) Study about how the metal cationic ions affect the properties of partially hydrolyzed hydrophobically modified polyacrylamide (HMHPAM) in aqueous solution. Colloids Surf A Physicochem Eng Asp 434:16–24CrossRef
12.
go back to reference Samanta A, Bera A, Ojha K, Mandal A (2010) Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. J Chem Eng Data 55:4315–4322CrossRef Samanta A, Bera A, Ojha K, Mandal A (2010) Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. J Chem Eng Data 55:4315–4322CrossRef
13.
go back to reference Sabhapondit A, Borthakur A, Haque I (2003) Characterization of acrylamide polymers for enhanced oil recovery. J Appl Polym Sci 87:1869–1878CrossRef Sabhapondit A, Borthakur A, Haque I (2003) Characterization of acrylamide polymers for enhanced oil recovery. J Appl Polym Sci 87:1869–1878CrossRef
14.
go back to reference Qiu J, Zhang Y, Meng X, Zhang H, Liu J (2010) Synthesis and characterization of poly [acrylamide-co-(sodium 4-styrenesulfonate)] via inverse microemulsion polymerization. Polym Int 59:78–84CrossRef Qiu J, Zhang Y, Meng X, Zhang H, Liu J (2010) Synthesis and characterization of poly [acrylamide-co-(sodium 4-styrenesulfonate)] via inverse microemulsion polymerization. Polym Int 59:78–84CrossRef
15.
go back to reference Yahaya GO, Ahdab AA, Ali SA, Abu-Sharkh BF, Hamad EZ (2001) Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer 42:3363–3372CrossRef Yahaya GO, Ahdab AA, Ali SA, Abu-Sharkh BF, Hamad EZ (2001) Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer 42:3363–3372CrossRef
16.
go back to reference Ye Z, Gou G, Gou S, Jiang W, Liu T (2013) Synthesis and characterization of a water-soluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical. J Appl Polym Sci 128:2003–2011 Ye Z, Gou G, Gou S, Jiang W, Liu T (2013) Synthesis and characterization of a water-soluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical. J Appl Polym Sci 128:2003–2011
17.
go back to reference Bai X, Yang Y, Xiao D, Pu X, Wang X (2015) Synthesis, characterization, and performance evaluation of the AM/AMPS/DMDAAC/SSS quadripolymer as a fluid loss additive for water-based drilling fluid. J Appl Polym Sci 132:27–34 Bai X, Yang Y, Xiao D, Pu X, Wang X (2015) Synthesis, characterization, and performance evaluation of the AM/AMPS/DMDAAC/SSS quadripolymer as a fluid loss additive for water-based drilling fluid. J Appl Polym Sci 132:27–34
18.
go back to reference Lowe AB, Mccormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190CrossRef Lowe AB, Mccormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4190CrossRef
19.
go back to reference Levitt D, Pope GA (2008) Selection and screening of polymers for enhanced-oil recovery. In: SPE symposium on improved oil recovery. Society of Petroleum Engineers Levitt D, Pope GA (2008) Selection and screening of polymers for enhanced-oil recovery. In: SPE symposium on improved oil recovery. Society of Petroleum Engineers
20.
go back to reference Taylor KC, Nasreldin HA (1995) Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J Pet Sci Eng 19(3–4):265–280 Taylor KC, Nasreldin HA (1995) Water-soluble hydrophobically associating polymers for improved oil recovery: a literature review. J Pet Sci Eng 19(3–4):265–280
21.
go back to reference Rogovina LZ, Vasil’Cv VG, Churochkina NA, Pryakhina TI (2001) Hydrophobically associating water-soluble polymers; a dramatic growth of solution viscosity and the specificity of physical gel formation. Macromol Symp 171(1):225–232CrossRef Rogovina LZ, Vasil’Cv VG, Churochkina NA, Pryakhina TI (2001) Hydrophobically associating water-soluble polymers; a dramatic growth of solution viscosity and the specificity of physical gel formation. Macromol Symp 171(1):225–232CrossRef
22.
go back to reference Tao J, Dai C, Kang W, Zhao G, Liu Y, Fang J, Gao M, You Q (2017) Experimental study on low interfacial tension foam for enhanced oil recovery in high-temperature and high-salinity reservoirs. Energy Fuels 31(12):13416–13426CrossRef Tao J, Dai C, Kang W, Zhao G, Liu Y, Fang J, Gao M, You Q (2017) Experimental study on low interfacial tension foam for enhanced oil recovery in high-temperature and high-salinity reservoirs. Energy Fuels 31(12):13416–13426CrossRef
23.
go back to reference Yang Z, Jia S, Zhang L, Xingcai WU, Dou H, Guo Z, Zeng L, Li H, Guo L, Jia Z, Fang W (2016) Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs. Pet Explor Dev 43(1):97–105CrossRef Yang Z, Jia S, Zhang L, Xingcai WU, Dou H, Guo Z, Zeng L, Li H, Guo L, Jia Z, Fang W (2016) Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs. Pet Explor Dev 43(1):97–105CrossRef
24.
go back to reference Wang L, Geng J, Bai B (2018) Highly deformable nano-cross-linker-bridged nanocomposite hydrogels for water management of oil recovery. Energy Fuels 32(3):3068–3076CrossRef Wang L, Geng J, Bai B (2018) Highly deformable nano-cross-linker-bridged nanocomposite hydrogels for water management of oil recovery. Energy Fuels 32(3):3068–3076CrossRef
25.
go back to reference Xu Z, Zhang Y, Qian X, Shi J, Chen L, Li B, Niu J, Liu L (2014) One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Appl Surf Sci 316:308–314CrossRef Xu Z, Zhang Y, Qian X, Shi J, Chen L, Li B, Niu J, Liu L (2014) One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Appl Surf Sci 316:308–314CrossRef
26.
go back to reference Mao H, Ji C, Liu M, Cao Z, Sun D, Xing Z, Chen X, Zhang Y, Song XM (2018) Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol. Appl Surf Sci 434:522–533CrossRef Mao H, Ji C, Liu M, Cao Z, Sun D, Xing Z, Chen X, Zhang Y, Song XM (2018) Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol. Appl Surf Sci 434:522–533CrossRef
27.
go back to reference Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny JM (2013) Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos Part A 46:166–172CrossRef Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny JM (2013) Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos Part A 46:166–172CrossRef
28.
go back to reference Chandrasekaran S, Faiella G, Prado LASA, Tölle F, Mülhaupt R, Schulte K (2013) Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Compos Part A 49:51–57CrossRef Chandrasekaran S, Faiella G, Prado LASA, Tölle F, Mülhaupt R, Schulte K (2013) Thermally reduced graphene oxide acting as a trap for multiwall carbon nanotubes in bi-filler epoxy composites. Compos Part A 49:51–57CrossRef
29.
go back to reference Pagé DJYS, Gopakumar TG (2006) Properties and crystallization of maleated polypropylene/graphite flake nanocomposites. Polym J 38(9):920–929CrossRef Pagé DJYS, Gopakumar TG (2006) Properties and crystallization of maleated polypropylene/graphite flake nanocomposites. Polym J 38(9):920–929CrossRef
30.
go back to reference Kuila T, Khanra P, Bose S, Kim NH, Ku BC, Moon B, Lee JH (2011) Preparation of water-dispersible graphene by facile surface modification of graphite oxide. Nanotechnology 22(30):305710CrossRef Kuila T, Khanra P, Bose S, Kim NH, Ku BC, Moon B, Lee JH (2011) Preparation of water-dispersible graphene by facile surface modification of graphite oxide. Nanotechnology 22(30):305710CrossRef
31.
go back to reference Torstensson A, Gorton L (1987) Catalytic oxidation of NADH by surface-modified graphite electrodes. J Electroanal Chem Interfacial Electrochem 130:199–207CrossRef Torstensson A, Gorton L (1987) Catalytic oxidation of NADH by surface-modified graphite electrodes. J Electroanal Chem Interfacial Electrochem 130:199–207CrossRef
32.
go back to reference He F, Fan J, Ma D, Zhang L, Leung C, Chan HL (2010) The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11):3139–3144CrossRef He F, Fan J, Ma D, Zhang L, Leung C, Chan HL (2010) The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11):3139–3144CrossRef
33.
go back to reference Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77:87–94CrossRef Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77:87–94CrossRef
34.
go back to reference Wan YJ, Gong LX, Tang LC, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A 64:79–89CrossRef Wan YJ, Gong LX, Tang LC, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A 64:79–89CrossRef
35.
go back to reference Lee CY, Bae JH, Kim TY, Chang SH, Kim SY (2015) Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos Part A 75:11–17CrossRef Lee CY, Bae JH, Kim TY, Chang SH, Kim SY (2015) Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos Part A 75:11–17CrossRef
36.
go back to reference Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19(26):4632–4638CrossRef Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19(26):4632–4638CrossRef
37.
go back to reference Yang MH (1998) The two-stages thermal degradation of polyacrylamide. Polym Test 17(3):191–198CrossRef Yang MH (1998) The two-stages thermal degradation of polyacrylamide. Polym Test 17(3):191–198CrossRef
38.
go back to reference Gou S, Yin T, Ye Z, Jiang W, Yang C, Ma Y, Feng M, Xia Q (2014) High-temperature resistance water-soluble copolymer derived from acrylamide, DMDAAC, and functionalized sulfonamide for potential application in enhance oil recovery. J Appl Polym Sci 131(17):40727CrossRef Gou S, Yin T, Ye Z, Jiang W, Yang C, Ma Y, Feng M, Xia Q (2014) High-temperature resistance water-soluble copolymer derived from acrylamide, DMDAAC, and functionalized sulfonamide for potential application in enhance oil recovery. J Appl Polym Sci 131(17):40727CrossRef
39.
go back to reference Liu XJ, Jiang WC, Gou SH, Ye ZB, Xie XD (2012) Synthesis and evaluation of a water-soluble acrylamide binary sulfonates copolymer on MMT crystalline interspace and EOR. J Appl Polym Sci 125(2):1252–1260CrossRef Liu XJ, Jiang WC, Gou SH, Ye ZB, Xie XD (2012) Synthesis and evaluation of a water-soluble acrylamide binary sulfonates copolymer on MMT crystalline interspace and EOR. J Appl Polym Sci 125(2):1252–1260CrossRef
Metadata
Title
Thermal-resistant, shear-stable and salt-tolerant polyacrylamide/surface-modified graphene oxide composite
Authors
Yahui Lyu
Chenglin Gu
Jiaping Tao
Xue Yao
Guang Zhao
Caili Dai
Publication date
28-08-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 24/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03967-x

Other articles of this Issue 24/2019

Journal of Materials Science 24/2019 Go to the issue

Premium Partners