Skip to main content
Top

2015 | OriginalPaper | Chapter

12. Thermal Systems and Design

Authors : B. N. Suresh, K. Sivan

Published in: Integrated Design for Space Transportation System

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The STS during its entire flight regime is exposed to different thermal environments, causing severe thermal loads to the vehicle, structural elements and several other sensitive elements. All thermal effects such as local heating rate and total heat load are to be analyzed in detail to understand the thermal loads during flight. Thermal environment of the vehicle and subsystems caused by aerodynamic heating depends mainly on their external configuration, vehicle surface material characteristics, flow field characteristics and vehicle trajectory. The thermal load caused by propulsion system depends on the type of propulsion system, vehicle operating altitude, nozzle expansion ratio and the vicinity of the subsystem elements with respect to the propulsion elements. Thermal protection materials and thickness in turn decide the thermal protection system mass depending on thermal environment, type of thermal load, materials used in the system and temperature constraints specified for the various subsystems. Thermal protection systems (TPS) are passive, semi-passive and active depending on the application. While appropriate TPS is used to ensure the normal function of the subsystem to meet the specified functions, the mass of the integrated vehicle has to be minimized. During the initial development phase, an integrated system design approach is required to arrive at optimum structural and thermal designs for the vehicle subsystems. Once the suitable thermal protection materials are chosen based on the detailed analyses, it is essential to carry out thermophysical and mechanical property tests for these materials within the temperature range they are expected to experience in flight. This chapter presents the thermal design aspects of vehicle and subsystems for a launch vehicle. The impact of the thermal environments, on vehicle and subsystems, the need for the integrated design strategy, the requirements of various subsystems which need thermal protection, design constraints and approach for optimum thermal design for each of the subsystems are highlighted. The various aspects of the heating environment due to jet exhaust are described. Thermal response analysis and the methodology for the analysis are covered. Tests for thermal protection systems and their qualification methods are also included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fay, F.A., Riddell, F.R.: Theory of stagnation point heat transfer in dissociated air. J. Aeronaut. Sci. 25, 73–85 (1958)MathSciNet Fay, F.A., Riddell, F.R.: Theory of stagnation point heat transfer in dissociated air. J. Aeronaut. Sci. 25, 73–85 (1958)MathSciNet
2.
go back to reference Lees, L.: Laminar heat transfer over blunt nosed bodies at hypersonic flight speeds. Jet Propul 26, 259–269 (1956)CrossRef Lees, L.: Laminar heat transfer over blunt nosed bodies at hypersonic flight speeds. Jet Propul 26, 259–269 (1956)CrossRef
3.
go back to reference Van Driest, E.R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Cross Method. NACA TR, NACA TN 2597 (1952) Van Driest, E.R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Cross Method. NACA TR, NACA TN 2597 (1952)
4.
go back to reference Beckwith, C.E., Gallagher J.J.: Local Heat Transfer and recovery temperature on a Yawed Cylinder at a Mach number of 4.15 and at High Reynolds Number. NASA TR, Issue, NASA‐TR‐ R‐104 (1961) Beckwith, C.E., Gallagher J.J.: Local Heat Transfer and recovery temperature on a Yawed Cylinder at a Mach number of 4.15 and at High Reynolds Number. NASA TR, Issue, NASA‐TR‐ R‐104 (1961)
5.
go back to reference Fontenot Jr., J.E.: Thermal radiation from solid rocket at high altitude. AIAA J 3(5), 970–972 (1965)CrossRef Fontenot Jr., J.E.: Thermal radiation from solid rocket at high altitude. AIAA J 3(5), 970–972 (1965)CrossRef
6.
go back to reference “Aerodynamic and Rocket Exhaust Heating during Launch and Ascent”, NASA Space Vehicle Design Criteria, NASA SP-8029, NASA, Washington DC (1969) “Aerodynamic and Rocket Exhaust Heating during Launch and Ascent”, NASA Space Vehicle Design Criteria, NASA SP-8029, NASA, Washington DC (1969)
7.
8.
go back to reference Rohsenow, W.M., Hartnelt, J.P.: Handbook of Heat Transfer. McGraw Hill, New York (1973) Rohsenow, W.M., Hartnelt, J.P.: Handbook of Heat Transfer. McGraw Hill, New York (1973)
9.
go back to reference Irwin, T.F., Hartnell, J.P.: Advances in Heat Transfer, vol. II. Academic, New York (1965) Irwin, T.F., Hartnell, J.P.: Advances in Heat Transfer, vol. II. Academic, New York (1965)
10.
go back to reference Bender, R.L., Reardon, J.E.: Preliminary Base Heating Environments for a Generalised ALS LO2/LH2 Launch Vehicle. Remtech Technical Note, Huntsville, Al, RTN218-01 (1989) Bender, R.L., Reardon, J.E.: Preliminary Base Heating Environments for a Generalised ALS LO2/LH2 Launch Vehicle. Remtech Technical Note, Huntsville, Al, RTN218-01 (1989)
11.
go back to reference Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York (1989) Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York (1989)
12.
go back to reference Fletcher, D.G.: Fundamentals of Hypersonic Flow-Aerothermodynamics. RTO-EN-AVT-116, Von Karman Institute, Belgium (2004) Fletcher, D.G.: Fundamentals of Hypersonic Flow-Aerothermodynamics. RTO-EN-AVT-116, Von Karman Institute, Belgium (2004)
13.
go back to reference Miller, C.G.: Aerothermodynamic simulation capabilities for aerospace vehicles. 20th AIAA advanced measurements and ground testing technology conference, AIAA, 98–2600 (1998) Miller, C.G.: Aerothermodynamic simulation capabilities for aerospace vehicles. 20th AIAA advanced measurements and ground testing technology conference, AIAA, 98–2600 (1998)
14.
go back to reference Hirschel, E.H.: Basics of Aerothermodynamics, vol. 206. Progress in astronautics and aeronautics, Ed. in Chief Zarchan P. Springer, Germany (2005) Hirschel, E.H.: Basics of Aerothermodynamics, vol. 206. Progress in astronautics and aeronautics, Ed. in Chief Zarchan P. Springer, Germany (2005)
15.
go back to reference Hosizaki, H., Chou, Y.S., Kulgei, N.G., Meyer, J.W.: Critical Review of Stagnation Point Heat Transfer Theory. Technical Report, AFFDL-TR-75-85 (1975) Hosizaki, H., Chou, Y.S., Kulgei, N.G., Meyer, J.W.: Critical Review of Stagnation Point Heat Transfer Theory. Technical Report, AFFDL-TR-75-85 (1975)
16.
go back to reference Hamilton, H.H.: Approximate Method of Calculating Heating Rates at General Three Dimensional Stagnation Points During Atmospheric Entry. NASA TR, NASA-TM-84S80, Hampton, VA (1983) Hamilton, H.H.: Approximate Method of Calculating Heating Rates at General Three Dimensional Stagnation Points During Atmospheric Entry. NASA TR, NASA-TM-84S80, Hampton, VA (1983)
17.
go back to reference Eckerts, E.R.G.: Engineering relations for heat transfer and friction in high velocity laminar and turbulent boundary layer flow over surface with constant pressure and temperature. J. Aerosp. Sci. 22, 585 (1955) Eckerts, E.R.G.: Engineering relations for heat transfer and friction in high velocity laminar and turbulent boundary layer flow over surface with constant pressure and temperature. J. Aerosp. Sci. 22, 585 (1955)
18.
go back to reference Chen, K.K., Thyson, A.: Extension of emmons spot theory to flows on blunt bodies. AIAA J Vol 9, no 5, 821–825 (1971) Chen, K.K., Thyson, A.: Extension of emmons spot theory to flows on blunt bodies. AIAA J Vol 9, no 5, 821–825 (1971)
19.
go back to reference Reeves, B.L.: Aerodynamic Heating in the Slip, Intermediate and Free molecular Flow Regimes. Report No: 6859. McDonnel Dongles Aircraft Corporation (1959) Reeves, B.L.: Aerodynamic Heating in the Slip, Intermediate and Free molecular Flow Regimes. Report No: 6859. McDonnel Dongles Aircraft Corporation (1959)
20.
go back to reference Detra, R.W., Hidalgo, H.: Generalized heat transfer formulas and graphs for nose cone re‐entry into the atmosphere. ARS J 31, 318–321 (1961) Detra, R.W., Hidalgo, H.: Generalized heat transfer formulas and graphs for nose cone re‐entry into the atmosphere. ARS J 31, 318–321 (1961)
21.
go back to reference Higgins K.: Comparison of Engineering Correlations for Predicting Heat Transfer in Zero-pressure-gradient Compressible Boundary Layers with CFD and Experimental Data. Defence Science and Technology Organisation DSTO–TR–2159 (2008) Higgins K.: Comparison of Engineering Correlations for Predicting Heat Transfer in Zero-pressure-gradient Compressible Boundary Layers with CFD and Experimental Data. Defence Science and Technology Organisation DSTO–TR–2159 (2008)
22.
go back to reference Hansen, C.F.: Thermodynamic and Transport Properties of High Temperature Air. NASA TR‐ R -50. Advisory Group for Aeronautical Research and Development, Paris (1959) Hansen, C.F.: Thermodynamic and Transport Properties of High Temperature Air. NASA TR‐ R -50. Advisory Group for Aeronautical Research and Development, Paris (1959)
23.
go back to reference “Liquid Rocket Engine Self-Cooled Combustion Chambers” NASA SP-8124, NASA, Washington DC (1977) “Liquid Rocket Engine Self-Cooled Combustion Chambers” NASA SP-8124, NASA, Washington DC (1977)
24.
go back to reference Cunnington, G.R., Funai, A.I., McNab, T.K.: Radiative Properties of Advanced Spacecraft Heat Shield Materials. NASA Contractor Report 3740 (1983) Cunnington, G.R., Funai, A.I., McNab, T.K.: Radiative Properties of Advanced Spacecraft Heat Shield Materials. NASA Contractor Report 3740 (1983)
25.
go back to reference Scala, S.M., Sampson, D.H.: Heat Transfer in Hypersonic Flow with Radiation and Chemical Reaction. Space Sciences Laboratory, Defense Document Centre, Scientific and Technical Formation, AD 410408 (1980) Scala, S.M., Sampson, D.H.: Heat Transfer in Hypersonic Flow with Radiation and Chemical Reaction. Space Sciences Laboratory, Defense Document Centre, Scientific and Technical Formation, AD 410408 (1980)
26.
go back to reference Howell, J.R., Siegal, R.: Thermal Radiation Heat Transfer. McGraw Hill, New York (1972) Howell, J.R., Siegal, R.: Thermal Radiation Heat Transfer. McGraw Hill, New York (1972)
27.
go back to reference Dawbarn, R.: Analysis of the Measured Effects of the Principal Exhaust Effluents from Solid Rocket Motors. NASA TR, NASA CR 3136 (1980) Dawbarn, R.: Analysis of the Measured Effects of the Principal Exhaust Effluents from Solid Rocket Motors. NASA TR, NASA CR 3136 (1980)
28.
go back to reference Simons, F.S.: Rocket Exhaust Plume Phenomenology. Aerospace Press and AIAA, The Aerospace Corporation, El Segundo (2000) Simons, F.S.: Rocket Exhaust Plume Phenomenology. Aerospace Press and AIAA, The Aerospace Corporation, El Segundo (2000)
29.
go back to reference Morizumi, S.J., Carpenter, H.O., Thermal radiation from the exhaust plume of an aluminized composite propellant rocket. AIAA, J Spacecraft Rockets, 1(5), 501–507 (1964) Morizumi, S.J., Carpenter, H.O., Thermal radiation from the exhaust plume of an aluminized composite propellant rocket. AIAA, J Spacecraft Rockets, 1(5), 501–507 (1964)
30.
go back to reference Dobbins, R.A.: Measurement of mean particle size in a gas-particle flow. AIAA J 1, 1940–1942 (1963)CrossRef Dobbins, R.A.: Measurement of mean particle size in a gas-particle flow. AIAA J 1, 1940–1942 (1963)CrossRef
31.
go back to reference Adelman, H.M.: Computational Aspects of Heat transfer in Structures. NASA TR, Issue, NASA CP-2216, Hampton (1982) Adelman, H.M.: Computational Aspects of Heat transfer in Structures. NASA TR, Issue, NASA CP-2216, Hampton (1982)
32.
go back to reference Swan, R.T., Pittman, C.M., Smith, J.C.: One dimensional Numerical Analysis of the Transient Response of Thermal Protection Systems. NASA TN D 2976. NASA TR, Issue, Washington, DC (1965) Swan, R.T., Pittman, C.M., Smith, J.C.: One dimensional Numerical Analysis of the Transient Response of Thermal Protection Systems. NASA TN D 2976. NASA TR, Issue, Washington, DC (1965)
33.
go back to reference Quinn, R.D.: A Method for Calculating Transient SurfaceTemperatures and Surface Heating Rates for High-Speed Aircraft. NASA/TP-2000-209034. NASA, CASI, Hanover, MD, (2000) Quinn, R.D.: A Method for Calculating Transient SurfaceTemperatures and Surface Heating Rates for High-Speed Aircraft. NASA/TP-2000-209034. NASA, CASI, Hanover, MD, (2000)
34.
go back to reference Myers, D.E., Martin C.J., and Blosser, M.L.: Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems. NASA/TM-2000-210289. NASA, Hampton/Langley (2000) Myers, D.E., Martin C.J., and Blosser, M.L.: Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems. NASA/TM-2000-210289. NASA, Hampton/Langley (2000)
35.
go back to reference Patankar, S.V.: A numerical method for conduction in composite materials flow in irregular geometries and conjugate heat transfer. In Proceedings of 6th international heat transfer conference, vol. 3, p 297, Toronto (1978) Patankar, S.V.: A numerical method for conduction in composite materials flow in irregular geometries and conjugate heat transfer. In Proceedings of 6th international heat transfer conference, vol. 3, p 297, Toronto (1978)
36.
go back to reference Patankar, S.V., Balinga, B.R.: A New Finite Difference Scheme for Parabolic Differential Equations. J Numer Heat Transf I, 27–37 (1978) Patankar, S.V., Balinga, B.R.: A New Finite Difference Scheme for Parabolic Differential Equations. J Numer Heat Transf I, 27–37 (1978)
37.
go back to reference Stone, H.L.: Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM J Numer Anal 5(3), 530–558 (1968)MathSciNetCrossRefMATH Stone, H.L.: Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM J Numer Anal 5(3), 530–558 (1968)MathSciNetCrossRefMATH
38.
go back to reference Burmester, L.C.: Convective Heat Transfer. Wiley, New York (1983) Burmester, L.C.: Convective Heat Transfer. Wiley, New York (1983)
Metadata
Title
Thermal Systems and Design
Authors
B. N. Suresh
K. Sivan
Copyright Year
2015
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2532-4_12

Premium Partner