Skip to main content
Top

2017 | OriginalPaper | Chapter

Thermoacoustics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoacoustic heat engines offer mechanically simple energy conversion that can utilize a wide variety of heat sources – including solar energy, biomass, and even the “waste” heat from internal combustion engines and industrial processes. This chapter will address the gas thermodynamics that enable such machines and discuss the practical elements that comprise thermoacoustic machines that act either as a converter of heat energy to another form of energy (such as electrical or mechanical energy) or as a heat pump that “moves” heat from a cold region to a warmer one. The distinction between the two topologies of thermoacoustic machines, stack-based and regenerator-based, will also be clarified and the differences between the two made clear. Finally, the latter portion of the chapter will discuss existing and potential applications for thermoacoustic machines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Backhaus S, Swift GW (2000) A thermoacoustic-Stirling heat engine: detailed study. J Acoust Soc Am 107:3148–3166CrossRef Backhaus S, Swift GW (2000) A thermoacoustic-Stirling heat engine: detailed study. J Acoust Soc Am 107:3148–3166CrossRef
go back to reference Backhaus S, Tward E, Petach M (2004) Traveling-wave thermoacoustic electric generator. Appl Phys Lett 85:1085–1087CrossRef Backhaus S, Tward E, Petach M (2004) Traveling-wave thermoacoustic electric generator. Appl Phys Lett 85:1085–1087CrossRef
go back to reference Bastyr KJ (2004) The design, construction, and performance of a high-frequency, high-power thermoacoustic-Stirling engine. Doctoral dissertation, The Pennsylvania State University Bastyr KJ (2004) The design, construction, and performance of a high-frequency, high-power thermoacoustic-Stirling engine. Doctoral dissertation, The Pennsylvania State University
go back to reference Bayram A et al (2005) Operation of thermoacoustic Stirling heat engine driven large multiple pulse tube refrigerators. In: Ross RG Jr (ed) Cryocoolers 13: proceedings of the 13th ICC held in New Orleans, Louisiana. Springer Science + Business Media, New York Bayram A et al (2005) Operation of thermoacoustic Stirling heat engine driven large multiple pulse tube refrigerators. In: Ross RG Jr (ed) Cryocoolers 13: proceedings of the 13th ICC held in New Orleans, Louisiana. Springer Science + Business Media, New York
go back to reference Beale WT (1971) Stirling cycle type thermal device. US Patent 3,552,120 Beale WT (1971) Stirling cycle type thermal device. US Patent 3,552,120
go back to reference Beranek LL (1954) Acoustic elements, Chapter 5. In: Acoustics. Acoustical Society of America Through the American Institute of Physics, pp 116–143 Beranek LL (1954) Acoustic elements, Chapter 5. In: Acoustics. Acoustical Society of America Through the American Institute of Physics, pp 116–143
go back to reference Ceperley PH (1979) A pistonless Stirling engine – the traveling wave heat engine. J Acoust Soc Am 66(5):1508–1513CrossRef Ceperley PH (1979) A pistonless Stirling engine – the traveling wave heat engine. J Acoust Soc Am 66(5):1508–1513CrossRef
go back to reference de Blok K (2010) Novel 4-stage traveling wave thermoacoustic power generator. In: Proceedings of ASME 2010 3rd Joint US-European fluids engineering summer meeting and 8th international conference on nanochannels, microchannels and minichannels, Montreal de Blok K (2010) Novel 4-stage traveling wave thermoacoustic power generator. In: Proceedings of ASME 2010 3rd Joint US-European fluids engineering summer meeting and 8th international conference on nanochannels, microchannels and minichannels, Montreal
go back to reference de Blok, Maria C, Hendrikus NA, Van Rijt J (2001) Thermo-acoustic system. US Patent 6,314,740 de Blok, Maria C, Hendrikus NA, Van Rijt J (2001) Thermo-acoustic system. US Patent 6,314,740
go back to reference Keolian RM, Wuthrich JW, Bastyr KJ (2007) Thermoacoustic piezoelectric generator. US Patent 77, 72, 746 Keolian RM, Wuthrich JW, Bastyr KJ (2007) Thermoacoustic piezoelectric generator. US Patent 77, 72, 746
go back to reference Kolin I (1995) Thermodynamic theory for Stirling cycle machine designs: special lecture 1. In: Proceedings of the seventh international conference on Stirling cycle machines, Waseda University, Tokyo, pp 1–7 Kolin I (1995) Thermodynamic theory for Stirling cycle machine designs: special lecture 1. In: Proceedings of the seventh international conference on Stirling cycle machines, Waseda University, Tokyo, pp 1–7
go back to reference Liu J, Garrett SL (2005) Characterization of a small moving-magnet electrodynamic linear motor. J Acoust Soc Am 118(4):2289–2294CrossRef Liu J, Garrett SL (2005) Characterization of a small moving-magnet electrodynamic linear motor. J Acoust Soc Am 118(4):2289–2294CrossRef
go back to reference MacCarty N et al (2008) A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sust Dev 12:56–65CrossRef MacCarty N et al (2008) A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sust Dev 12:56–65CrossRef
go back to reference Reid RS, Swift GW (2000) Experiments with a flow-through thermoacoustic refrigerator. J Acoust Soc Am 108(6):2835–2842CrossRef Reid RS, Swift GW (2000) Experiments with a flow-through thermoacoustic refrigerator. J Acoust Soc Am 108(6):2835–2842CrossRef
go back to reference Roden C, Bond T (2006) Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ Sci Technol 40(21):6750–6757CrossRef Roden C, Bond T (2006) Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ Sci Technol 40(21):6750–6757CrossRef
go back to reference Sier R (1995) Rev. Robert Stirling D. D.: inventor of the heat economiser and Stirling engine. Ipswich Book, Ipswich Sier R (1995) Rev. Robert Stirling D. D.: inventor of the heat economiser and Stirling engine. Ipswich Book, Ipswich
go back to reference Swift GW (2002) Thermoacoustics: a unifying perspective for some engines and refrigerators. Acoustical Society of America, New York Swift GW (2002) Thermoacoustics: a unifying perspective for some engines and refrigerators. Acoustical Society of America, New York
go back to reference Swift GW, Backhaus S (2004) A resonant, self-pumped, circulating thermoacoustic heat exchanger. J Acoust Soc Am 116(5):2923–2938CrossRef Swift GW, Backhaus S (2004) A resonant, self-pumped, circulating thermoacoustic heat exchanger. J Acoust Soc Am 116(5):2923–2938CrossRef
go back to reference Urieli I, Berchowitz D (1984) Stirling cycle engine analysis. A. Hilger, Bristol Urieli I, Berchowitz D (1984) Stirling cycle engine analysis. A. Hilger, Bristol
go back to reference Wheatley JC, Swift GW, Migliori A (1983) Acoustical heat pumping engine. US Patent 4,398,398, 16 Aug 1983 Wheatley JC, Swift GW, Migliori A (1983) Acoustical heat pumping engine. US Patent 4,398,398, 16 Aug 1983
go back to reference Wheatley JC, Swift GW, Migliori A (1986) The natural heat engine. Los Alamos Sci 14:2–33, LAUR 86–2699 Wheatley JC, Swift GW, Migliori A (1986) The natural heat engine. Los Alamos Sci 14:2–33, LAUR 86–2699
Metadata
Title
Thermoacoustics
Author
Matthew E. Poese
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-14409-2_48