Skip to main content
Top
Published in: Journal of Materials Science 14/2019

15-04-2019 | Computation and theory

Thermodynamic analysis of the Co–W system

Authors: Peisheng Wang, Oleg Y. Kontsevoi, Gregory B. Olson

Published in: Journal of Materials Science | Issue 14/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Density functional theory (DFT) calculations including spin polarization were performed to obtain the energies for all end-member configurations of the μ phase, which were used to evaluate the Gibbs energies of the μ phase. The Co–W system was thermodynamically re-assessed in the present work. The present calculated phase diagram fits well with the experimental data. Applying the DFT results was essential for giving a better description of the μ phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K (2006) Cobalt-base high-temperature alloys. Science 312:90–91CrossRef Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K (2006) Cobalt-base high-temperature alloys. Science 312:90–91CrossRef
2.
go back to reference Suzuki A, Inui H, Pollock TM (2015) L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 45:345–368CrossRef Suzuki A, Inui H, Pollock TM (2015) L12-strengthened cobalt-base superalloys. Annu Rev Mater Res 45:345–368CrossRef
3.
go back to reference Ishida K (2008) Intermetallic compounds in Co-base alloys–phase stability and application to superalloys. In: MRS proc Cambridge Univ Press, pp 1128-U1106-1106 Ishida K (2008) Intermetallic compounds in Co-base alloys–phase stability and application to superalloys. In: MRS proc Cambridge Univ Press, pp 1128-U1106-1106
4.
go back to reference Olson GB (2014) Preface to the viewpoint set on: the Materials Genome. Scr Mater 70:1–2CrossRef Olson GB (2014) Preface to the viewpoint set on: the Materials Genome. Scr Mater 70:1–2CrossRef
5.
go back to reference Wang P, Xiong W, Kattner UR, Campbell CE, Lass EA, Kontsevoi OY, Olson GB (2017) Thermodynamic re-assessment of the Al–Co–W system. CALPHAD 59:112–130CrossRef Wang P, Xiong W, Kattner UR, Campbell CE, Lass EA, Kontsevoi OY, Olson GB (2017) Thermodynamic re-assessment of the Al–Co–W system. CALPHAD 59:112–130CrossRef
6.
go back to reference Naidu SVN, Sriramamurthy AM, Rao PR (1986) The Co–W (cobalt–tungsten) system. Alloy Phase Diagr 2:43–52 Naidu SVN, Sriramamurthy AM, Rao PR (1986) The Co–W (cobalt–tungsten) system. Alloy Phase Diagr 2:43–52
7.
go back to reference Kreitz K (1922) Co–W alloys. Metall Erz 19:137–140 Kreitz K (1922) Co–W alloys. Metall Erz 19:137–140
8.
go back to reference Takeda S (1936) A metallographic study of the action of the cementing materials for cemented tungsten carbide. Science Rept Tohoku Univ, Honda Anniv, pp 864–881 Takeda S (1936) A metallographic study of the action of the cementing materials for cemented tungsten carbide. Science Rept Tohoku Univ, Honda Anniv, pp 864–881
9.
go back to reference Haschimoto U (1937) Relation between the allotropic transformation of cobalt and some additional elements. J Jpn Inst Met 1:177–190CrossRef Haschimoto U (1937) Relation between the allotropic transformation of cobalt and some additional elements. J Jpn Inst Met 1:177–190CrossRef
10.
go back to reference Åkesson L (1982) An experimental and thermodynamic study of the Co–W–C system in the temperature range 1473–1698 K. Uppsala University, Sweden Åkesson L (1982) An experimental and thermodynamic study of the Co–W–C system in the temperature range 1473–1698 K. Uppsala University, Sweden
11.
go back to reference Gabriel A, Allibert C, Ansara I, Lukas H (1985) Experimental and calculated phase diagrams of the Ni–W, Co–W and Co–Ni–W system. Z Metallkd 76:589–595 Gabriel A, Allibert C, Ansara I, Lukas H (1985) Experimental and calculated phase diagrams of the Ni–W, Co–W and Co–Ni–W system. Z Metallkd 76:589–595
12.
go back to reference Sykes W (1933) The cobalt–tungsten system. Trans ASST 21:385–421 Sykes W (1933) The cobalt–tungsten system. Trans ASST 21:385–421
13.
go back to reference Larikov LN, Shimatko OA (1967) Dokl Akad Nauk USSR 29:540–542 Larikov LN, Shimatko OA (1967) Dokl Akad Nauk USSR 29:540–542
14.
go back to reference Takayama T, Wey MY, Nishizawa T (1981) Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt. Trans J Inst Met 22:315–325CrossRef Takayama T, Wey MY, Nishizawa T (1981) Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt. Trans J Inst Met 22:315–325CrossRef
15.
go back to reference Sato J, Oikawa K, Kainuma R, Ishida K (2005) Experimental verification of magnetically induced phase separation in αCo phase and thermodynamic calculations of phase equilibria in the Co–W system. Mater Trans 46:1199–1207CrossRef Sato J, Oikawa K, Kainuma R, Ishida K (2005) Experimental verification of magnetically induced phase separation in αCo phase and thermodynamic calculations of phase equilibria in the Co–W system. Mater Trans 46:1199–1207CrossRef
16.
go back to reference Dmitrieva G, Cherepova T, Shurin A (2005) Phase equilibria in Co-CoAl-W alloys. Met Sci Treat Met 4:3–6 Dmitrieva G, Cherepova T, Shurin A (2005) Phase equilibria in Co-CoAl-W alloys. Met Sci Treat Met 4:3–6
17.
go back to reference Ravi R, Paul A (2011) Interdiffusion study on Co (W) solid solution and topological close-packed μ phase in Co–W system. Intermetallics 19:426–428CrossRef Ravi R, Paul A (2011) Interdiffusion study on Co (W) solid solution and topological close-packed μ phase in Co–W system. Intermetallics 19:426–428CrossRef
18.
go back to reference Neumeier L, Holman JL (1967) The tungsten-cobalt for compositions to 85 atomic percent cobalt. U.S. Department of the Interior, Bureau of Mines, Washington Neumeier L, Holman JL (1967) The tungsten-cobalt for compositions to 85 atomic percent cobalt. U.S. Department of the Interior, Bureau of Mines, Washington
19.
go back to reference Koster W, Tonn W (1932) The binary systems cobalt–tungsten and cobalt–molybdenum. Z Metallkd 24:296–299 Koster W, Tonn W (1932) The binary systems cobalt–tungsten and cobalt–molybdenum. Z Metallkd 24:296–299
20.
go back to reference Efimova TV, Polotnyuk VV, Shmtko OA (1970) Decomposition of supersaturated solid solutions of tungsten in cobalt studied by thermo-magnetic method, Fazovye. Prevrashch 32:56–59 Efimova TV, Polotnyuk VV, Shmtko OA (1970) Decomposition of supersaturated solid solutions of tungsten in cobalt studied by thermo-magnetic method, Fazovye. Prevrashch 32:56–59
21.
go back to reference Dmitrieva G, Vasilenko V, Melnik I (2008) Al–Co–W fusion diagram in the Co–CoAl–W part. Chem Met Alloys 1:338–342 Dmitrieva G, Vasilenko V, Melnik I (2008) Al–Co–W fusion diagram in the Co–CoAl–W part. Chem Met Alloys 1:338–342
23.
go back to reference Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348CrossRef Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348CrossRef
24.
go back to reference Hillert M (2001) The compound energy formalism. J Alloy Compd 320:161–176CrossRef Hillert M (2001) The compound energy formalism. J Alloy Compd 320:161–176CrossRef
25.
go back to reference Kusoffsky A, Dupin N, Sundman B (2001) On the compound energy formalism applied to fcc ordering. CALPHAD 25:549–565CrossRef Kusoffsky A, Dupin N, Sundman B (2001) On the compound energy formalism applied to fcc ordering. CALPHAD 25:549–565CrossRef
26.
go back to reference Ansara I, Burton B, Chen Q, Hillert M, Fernandez-Guillermet A, Fries SG, Lukas HL, Seifert H-J, Oates WA (2000) Models for composition dependence. CALPHAD 24:19–40CrossRef Ansara I, Burton B, Chen Q, Hillert M, Fernandez-Guillermet A, Fries SG, Lukas HL, Seifert H-J, Oates WA (2000) Models for composition dependence. CALPHAD 24:19–40CrossRef
27.
go back to reference Wang P, Peters MC, Kattner UR, Choudhary K, Olson GB (2019) Thermodynamic analysis of the topologically close packed σ phase in the Co-Cr system. Intermetallics 105:13–20CrossRef Wang P, Peters MC, Kattner UR, Choudhary K, Olson GB (2019) Thermodynamic analysis of the topologically close packed σ phase in the Co-Cr system. Intermetallics 105:13–20CrossRef
28.
go back to reference Wimmer E, Krakauer H, Weinert M, Freeman AJ (1981) Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys Rev B 24:864–875CrossRef Wimmer E, Krakauer H, Weinert M, Freeman AJ (1981) Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys Rev B 24:864–875CrossRef
29.
go back to reference Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRef
30.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef
31.
go back to reference Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223CrossRef Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223CrossRef
32.
go back to reference Liechtenstein AI, Katsnelson M, Antropov V, Gubanov V (1987) Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater 67:65–74CrossRef Liechtenstein AI, Katsnelson M, Antropov V, Gubanov V (1987) Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater 67:65–74CrossRef
33.
go back to reference Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. CALPHAD 2:227–238CrossRef Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. CALPHAD 2:227–238CrossRef
34.
go back to reference Joubert J-M, Dupin N (2004) Mixed site occupancies in the μ phase. Intermetallics 12:1373–1380CrossRef Joubert J-M, Dupin N (2004) Mixed site occupancies in the μ phase. Intermetallics 12:1373–1380CrossRef
36.
go back to reference Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501–1509CrossRef Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:1501–1509CrossRef
37.
go back to reference Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput Mater 1:15010CrossRef Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C (2015) The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput Mater 1:15010CrossRef
Metadata
Title
Thermodynamic analysis of the Co–W system
Authors
Peisheng Wang
Oleg Y. Kontsevoi
Gregory B. Olson
Publication date
15-04-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03616-3

Other articles of this Issue 14/2019

Journal of Materials Science 14/2019 Go to the issue

Premium Partners