Skip to main content
Top

2013 | OriginalPaper | Chapter

65. Thermodynamics and Resource Consumption: Concepts, Methodologies, and the Case of Copper

Author : Dr. Stefan Gößling-Reisemann

Published in: Handbook of Sustainable Engineering

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Analysis and minimization of resource consumption is an essential aspect of sustainability. Engineers in this field need to be equipped with concepts and methodologies for assessment and sustainable design of products and processes. Thermodynamics offers these concepts and methodologies. In the current debate on material flows, the throughput of matter and energy is the primary focus. Consumption, however, starts when material and energy is transformed and loses its potential to be useful in further products or processes. On the physical level, this loss of potential utility is well described by entropy production or exergy destruction, two related concepts from thermodynamics. Using these concepts, methodologies for analyzing resource consumption were constructed and have been successfully applied to a large number of processes, products, and services. Here, a very brief introduction to thermodynamics is given to enable the interested reader to understand the underlying concepts and help in the application of thermodynamics to analyze resource consumption. Established measures for resource consumption can be grouped into those approaches which are based on the first law of thermodynamics (the conservation of energy and matter) and those approaches which are based on the second law of thermodynamics (entropy production and the devaluation of energy and matter). A brief summary of the currently used approaches is given and how they relate to the thermodynamic interpretation of resource consumption. Exergy and entropy analysis are introduced as analytical tools and also briefly explained, with recommendations for further self-study to get more familiar with the methodologies. An example, copper making from sulfidic ore concentrates is presented as a case study for the application of entropy analysis, and the results are compared to results from other (exergy) analyses. Finally, an interpretation of entropy production in the context of ecological sustainability and finite resources is offered, based on the finite entropy disposal rate of the earth, which enables the reader to evaluate the meaning of the presented results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference S.H. Amini, J.A.M. Remmerswaal, M.B. Castro, M.A. Reuter, Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15(10), 907–913 (2007)CrossRef S.H. Amini, J.A.M. Remmerswaal, M.B. Castro, M.A. Reuter, Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15(10), 907–913 (2007)CrossRef
go back to reference G. Angerer, L. Erdmann, F. Marscheider-Weidemann, M. Scharp, A. Lüllmann, V. Handke, M. Marwede, Rohstoffe für Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. ISI-Schriftenreihe Innovationspotenziale (Fraunhofer Verlag, Stuttgart, 2009) G. Angerer, L. Erdmann, F. Marscheider-Weidemann, M. Scharp, A. Lüllmann, V. Handke, M. Marwede, Rohstoffe für Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. ISI-Schriftenreihe Innovationspotenziale (Fraunhofer Verlag, Stuttgart, 2009)
go back to reference I. Aoki, Entropy principle for human development, growth and aging. J. Theor. Biol. 150(2), 215–223 (1991)CrossRef I. Aoki, Entropy principle for human development, growth and aging. J. Theor. Biol. 150(2), 215–223 (1991)CrossRef
go back to reference I. Aoki, Entropy production in living systems – from organisms to ecosystems. Thermochim. Acta 250(2), 359–370 (1995)CrossRef I. Aoki, Entropy production in living systems – from organisms to ecosystems. Thermochim. Acta 250(2), 359–370 (1995)CrossRef
go back to reference I. Aoki, Entropy law in aquatic communities and the general entropy principle for the development of living systems. Ecol. Model. 215(1), 89–92 (2008)CrossRef I. Aoki, Entropy law in aquatic communities and the general entropy principle for the development of living systems. Ecol. Model. 215(1), 89–92 (2008)CrossRef
go back to reference K. Arrow, P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K. Mäler, S. Schneider, Are we consuming too much? J. Econ. Perspect. 18(3), 147–172 (2004)CrossRef K. Arrow, P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K. Mäler, S. Schneider, Are we consuming too much? J. Econ. Perspect. 18(3), 147–172 (2004)CrossRef
go back to reference K. Arrow, G. Daily, P. Dasgupta, P. Ehrlich, L. Goulder, G. Heal, S. Levin, K. Mäler, S. Schneider, D. Starrett, B. Walker, Consumption, investment, and future well-being reply to Daly et al. Conserv. Biol. 21(5), 1363–1365 (2007)CrossRef K. Arrow, G. Daily, P. Dasgupta, P. Ehrlich, L. Goulder, G. Heal, S. Levin, K. Mäler, S. Schneider, D. Starrett, B. Walker, Consumption, investment, and future well-being reply to Daly et al. Conserv. Biol. 21(5), 1363–1365 (2007)CrossRef
go back to reference R.U. Ayres, L.W. Ayres, A. Masini, An application of exergy accounting to five basic metal industries, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 141–194 R.U. Ayres, L.W. Ayres, A. Masini, An application of exergy accounting to five basic metal industries, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 141–194
go back to reference I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, 1995)CrossRef I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, 1995)CrossRef
go back to reference A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Advanced Topics in Mechanical Engineering Series, vol. 2 (CRC, Boca Raton, 1996) A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Advanced Topics in Mechanical Engineering Series, vol. 2 (CRC, Boca Raton, 1996)
go back to reference A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization (Wiley, New York, 1996)MATH A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization (Wiley, New York, 1996)MATH
go back to reference L. Borel, D. Favrat, Thermodynamics and Energy Systems Analysis: From Energy to Exergy (EFPL/CRC, Lausanne, 2010) L. Borel, D. Favrat, Thermodynamics and Energy Systems Analysis: From Energy to Exergy (EFPL/CRC, Lausanne, 2010)
go back to reference M.E. Bösch, S. Hellweg, M.A.J. Huijbregts, R. Frischknecht, Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 12(3), 181–190 (2007) M.E. Bösch, S. Hellweg, M.A.J. Huijbregts, R. Frischknecht, Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 12(3), 181–190 (2007)
go back to reference V.M. Brodyansky, The Efficiency of Industrial Processes: Exergy Analysis and Optimization (Elsevier, Amsterdam, 1994) V.M. Brodyansky, The Efficiency of Industrial Processes: Exergy Analysis and Optimization (Elsevier, Amsterdam, 1994)
go back to reference M.B.G. Castro, J.A.M. Remmerswaal, M.A. Reuter, U.J.M. Boin, A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43(1), 1–19 (2004)CrossRef M.B.G. Castro, J.A.M. Remmerswaal, M.A. Reuter, U.J.M. Boin, A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43(1), 1–19 (2004)CrossRef
go back to reference R. Clausius, Über die bewegende Kraft der Wärme. Ann. Phys. 79, 368–397, 500–524 (1850)CrossRef R. Clausius, Über die bewegende Kraft der Wärme. Ann. Phys. 79, 368–397, 500–524 (1850)CrossRef
go back to reference L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 1: an exergy-based definition of consumption and a thermodynamic interpretation of ecosystem evolution. Exergy 1(3), 146–165 (2001a)CrossRef L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 1: an exergy-based definition of consumption and a thermodynamic interpretation of ecosystem evolution. Exergy 1(3), 146–165 (2001a)CrossRef
go back to reference L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 2: a non-dimensional analysis of means to reduce resource depletion. Exergy 1(4):234–255 (2001b)CrossRef L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 2: a non-dimensional analysis of means to reduce resource depletion. Exergy 1(4):234–255 (2001b)CrossRef
go back to reference R.L. Cornelissen, Thermodynamics and sustainable development – the use of exergy analysis and the reduction of irreversibility. Dissertation, University of Twente, 1997 R.L. Cornelissen, Thermodynamics and sustainable development – the use of exergy analysis and the reduction of irreversibility. Dissertation, University of Twente, 1997
go back to reference R.L. Cornelissen, G.G. Hirs, The value of exergetic life cycle assessment besides LCA. Energy Convers. Manag. 43(9), 1417–1424 (2002)CrossRef R.L. Cornelissen, G.G. Hirs, The value of exergetic life cycle assessment besides LCA. Energy Convers. Manag. 43(9), 1417–1424 (2002)CrossRef
go back to reference H. Daly, B. Czech, D. Trauger, W. Rees, M. Grover, T. Dobson, S. Trombulak, Are we consuming too much-for what? Conserv. Biol. 21(5), 1359–1362 (2007)CrossRef H. Daly, B. Czech, D. Trauger, W. Rees, M. Grover, T. Dobson, S. Trombulak, Are we consuming too much-for what? Conserv. Biol. 21(5), 1359–1362 (2007)CrossRef
go back to reference W.G. Davenport, E.H. Partelpoeg, Flash Smelting: Analysis, Control and Optimization (Pergamon, Oxford, 1987) W.G. Davenport, E.H. Partelpoeg, Flash Smelting: Analysis, Control and Optimization (Pergamon, Oxford, 1987)
go back to reference J. Dewulf, H. van Langenhove, Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ. Sci. Pollut. Res. Int. 9(4), 267–273 (2002a)CrossRef J. Dewulf, H. van Langenhove, Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ. Sci. Pollut. Res. Int. 9(4), 267–273 (2002a)CrossRef
go back to reference J. Dewulf, H. van Langenhove, Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environ. Sci. Technol. 36(5), 1130–1135 (2002b)CrossRef J. Dewulf, H. van Langenhove, Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environ. Sci. Technol. 36(5), 1130–1135 (2002b)CrossRef
go back to reference J. Dewulf, M.E. Bösch, B. de Meester, G. van der Vorst, H.V. Langenhove, S. Hellweg, M.A.J. Huijbregts, Cumulative exergy extraction from the natural environment (CEENE) a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41(24), 8477–8483 (2007)CrossRef J. Dewulf, M.E. Bösch, B. de Meester, G. van der Vorst, H.V. Langenhove, S. Hellweg, M.A.J. Huijbregts, Cumulative exergy extraction from the natural environment (CEENE) a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41(24), 8477–8483 (2007)CrossRef
go back to reference W. Ebeling, A. Engel, R. Feistel, Physik der Evolutionsprozesse (Akademie-Verl., Berlin, 1990)MATH W. Ebeling, A. Engel, R. Feistel, Physik der Evolutionsprozesse (Akademie-Verl., Berlin, 1990)MATH
go back to reference European Commission, Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide (Office for Official Publications of the European Communities, Luxembourg, 2001) European Commission, Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide (Office for Official Publications of the European Communities, Luxembourg, 2001)
go back to reference European Commission, Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials, Brussels (2010) European Commission, Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials, Brussels (2010)
go back to reference R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics. The Definitive and Extended Edition (Addison-Wesley, San Francisco/Harlow, 2009) R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics. The Definitive and Extended Edition (Addison-Wesley, San Francisco/Harlow, 2009)
go back to reference N. Georgescu-Roegen, The Entropy Law and the Economic Process (Harvard University Press, Cambridge, 1971) N. Georgescu-Roegen, The Entropy Law and the Economic Process (Harvard University Press, Cambridge, 1971)
go back to reference P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)MATH P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)MATH
go back to reference S. Gößling-Reisemann, What is resource consumption and how can it be measured?: Theoretical considerations. J. Ind. Ecol. 12(1), 10–25 (2008a)CrossRef S. Gößling-Reisemann, What is resource consumption and how can it be measured?: Theoretical considerations. J. Ind. Ecol. 12(1), 10–25 (2008a)CrossRef
go back to reference S. Gößling-Reisemann, What is resource consumption and how can it be Measured? Application of entropy analysis to copper production. J. Ind. Ecol. 12(4), 570–582 (2008b)CrossRef S. Gößling-Reisemann, What is resource consumption and how can it be Measured? Application of entropy analysis to copper production. J. Ind. Ecol. 12(4), 570–582 (2008b)CrossRef
go back to reference S. Gößling-Reisemann, Entropy production and resource consumption in life cycle assessments, in Thermodynamics and the Destruction of Resources, ed. by B. Bakshi, T. Gutowski, D. Sekulic (Cambridge University Press, New York, 2011) S. Gößling-Reisemann, Entropy production and resource consumption in life cycle assessments, in Thermodynamics and the Destruction of Resources, ed. by B. Bakshi, T. Gutowski, D. Sekulic (Cambridge University Press, New York, 2011)
go back to reference S. Gößling-Reisemann, A. von Gleich, V. Knobloch, B. Cebulla, Bewertungsmaßstäbe für metallische Stoffströme: von Kritikalität bis Entropie, in Methoden der Stoffstromanalyse: Konzepte, agentenbasierte Modellierung und Ökobilanz, ed. by F. Beckenbach. Stoffstromanalysen, vol. 1, 1st edn. (Metropolis, Marburg, 2011) S. Gößling-Reisemann, A. von Gleich, V. Knobloch, B. Cebulla, Bewertungsmaßstäbe für metallische Stoffströme: von Kritikalität bis Entropie, in Methoden der Stoffstromanalyse: Konzepte, agentenbasierte Modellierung und Ökobilanz, ed. by F. Beckenbach. Stoffstromanalysen, vol. 1, 1st edn. (Metropolis, Marburg, 2011)
go back to reference T. Graedel, D. van Beers, M. Bertram, K. Fuse, R. Gordon, A. Gritsinin, A. Kapur, R. Klee, R. Lifset, Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 38(4), 1242–1252 (2004)CrossRef T. Graedel, D. van Beers, M. Bertram, K. Fuse, R. Gordon, A. Gritsinin, A. Kapur, R. Klee, R. Lifset, Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 38(4), 1242–1252 (2004)CrossRef
go back to reference C. Hagelüken, The challenge of open cycles – barriers to a closed loop economy demonstrated for consumer electronics and cars, in R’07 World Congress: Recovery of Materials and Energy for Resource Efficiency(EMPA, Davos, 2007) C. Hagelüken, The challenge of open cycles – barriers to a closed loop economy demonstrated for consumer electronics and cars, in R’07 World Congress: Recovery of Materials and Energy for Resource Efficiency(EMPA, Davos, 2007)
go back to reference C. Hagelüken, M. Buchert, H. Stahl, Stoffströme der Platingruppenmetalle: Systemanalyse und Maßnahmen für eine nachhaltige Optimierung der Stoffströme der Platingruppenmetalle; Endbericht (GDMB-Medienverl., Clausthal-Zellerfeld, 2005) C. Hagelüken, M. Buchert, H. Stahl, Stoffströme der Platingruppenmetalle: Systemanalyse und Maßnahmen für eine nachhaltige Optimierung der Stoffströme der Platingruppenmetalle; Endbericht (GDMB-Medienverl., Clausthal-Zellerfeld, 2005)
go back to reference W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, Boca Raton, 2010) W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, Boca Raton, 2010)
go back to reference D. Janke, L. Savov, M.E. Vogel, Secondary materials in steel production and recycling, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 313–334 D. Janke, L. Savov, M.E. Vogel, Secondary materials in steel production and recycling, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 313–334
go back to reference Z. Kolenda, J. Donizak, A. Holda, J. Szmyd, M. Zembura, An analysis of cumulative energy and exergy consumption in copper production, in International Symposium ECOS’92: Conference Proceedings, Zaragoza (The American Society of Mechanical Engineers, New York, 1992), pp. 275–282 Z. Kolenda, J. Donizak, A. Holda, J. Szmyd, M. Zembura, An analysis of cumulative energy and exergy consumption in copper production, in International Symposium ECOS’92: Conference Proceedings, Zaragoza (The American Society of Mechanical Engineers, New York, 1992), pp. 275–282
go back to reference D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998)MATH D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998)MATH
go back to reference T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Krieger Publishing, Malabar, 1995) T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Krieger Publishing, Malabar, 1995)
go back to reference P. Linstrom, W. Mallard (eds.), NIST Chemistry WebBook (http://webbook.nist.gov): NIST Standard Reference Database Number 69, June 2010. National Institute of Standards and Technology, Gaithersburg, 20899 (2010) P. Linstrom, W. Mallard (eds.), NIST Chemistry WebBook (http://​webbook.​nist.​gov): NIST Standard Reference Database Number 69, June 2010. National Institute of Standards and Technology, Gaithersburg, 20899 (2010)
go back to reference National Research Council (NRC), Minerals, Critical Minerals, and the U.S. Economy (The National Academies Press, Washington, DC, 2008) National Research Council (NRC), Minerals, Critical Minerals, and the U.S. Economy (The National Academies Press, Washington, DC, 2008)
go back to reference G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977) G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977)
go back to reference Z. Rant, Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forschung. Ing. Wesen 22, 36–37 (1956) Z. Rant, Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forschung. Ing. Wesen 22, 36–37 (1956)
go back to reference H. Rechberger, Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft. Wiener Mitteilungen, vol. 158 (Technical University Institute für Wassergüte und Abfallwirtschaft, Wien, 1999) H. Rechberger, Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft. Wiener Mitteilungen, vol. 158 (Technical University Institute für Wassergüte und Abfallwirtschaft, Wien, 1999)
go back to reference H. Rechberger, T. Graedel, The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 42(1), 59–72 (2002)CrossRef H. Rechberger, T. Graedel, The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 42(1), 59–72 (2002)CrossRef
go back to reference M.A. Reuter, U.M.J. Boin, A. van Schaik, E.V. Verhoef, K. Heiskanen, Y. Yang, G. Georgalli, The Metrics of Material and Metal Ecology: Harmonizing the Resource, Technology and Environmental Cycles (Elsevier, Amsterdam, 2005) M.A. Reuter, U.M.J. Boin, A. van Schaik, E.V. Verhoef, K. Heiskanen, Y. Yang, G. Georgalli, The Metrics of Material and Metal Ecology: Harmonizing the Resource, Technology and Environmental Cycles (Elsevier, Amsterdam, 2005)
go back to reference M. Ritthoff, H. Rohn, C. Liedtke, Calculating MIPS: Resource Productivity of Products and Services. Wuppertal Spezial, vol. 27 (Wuppertal-Institute for Climate, Environment and Energy, Wuppertal, 2002) M. Ritthoff, H. Rohn, C. Liedtke, Calculating MIPS: Resource Productivity of Products and Services. Wuppertal Spezial, vol. 27 (Wuppertal-Institute for Climate, Environment and Energy, Wuppertal, 2002)
go back to reference M.A. Rosen, Economics and Exergy: An Enhanced Approach to Energy Economics (Nova Science Publisher’s, Hauppauge, 2010) M.A. Rosen, Economics and Exergy: An Enhanced Approach to Energy Economics (Nova Science Publisher’s, Hauppauge, 2010)
go back to reference F. Schmidt-Bleek, MAIA: Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept. Wuppertal Texte (Birkhäuser, Berlin, 1998) F. Schmidt-Bleek, MAIA: Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept. Wuppertal Texte (Birkhäuser, Berlin, 1998)
go back to reference F. Schmidt-Bleek, R. Klüting, Wieviel Umwelt braucht der Mensch?: MIPS – das Maß für ökologisches Wirtschaften (Birkhäuser, Berlin, 1994)CrossRef F. Schmidt-Bleek, R. Klüting, Wieviel Umwelt braucht der Mensch?: MIPS – das Maß für ökologisches Wirtschaften (Birkhäuser, Berlin, 1994)CrossRef
go back to reference T. Seager, T. Theis, A uniform definition and quantitative basis for industrial ecology. J. Clean. Prod. 10(3), 225–236 (2002)CrossRef T. Seager, T. Theis, A uniform definition and quantitative basis for industrial ecology. J. Clean. Prod. 10(3), 225–236 (2002)CrossRef
go back to reference M. Stewart, B.P. Weidema, A consistent framework for assessing the impacts from resource use – a focus on resource functionality. Int. J. Life Cycle Assess. 10(4), 240–247 (2005)CrossRef M. Stewart, B.P. Weidema, A consistent framework for assessing the impacts from resource use – a focus on resource functionality. Int. J. Life Cycle Assess. 10(4), 240–247 (2005)CrossRef
go back to reference J. Szargut, Exergy Method: Technical and Ecological Applications. Developments in Heat Transfer, vol. 18 (WIT, Southampton, 2005) J. Szargut, Exergy Method: Technical and Ecological Applications. Developments in Heat Transfer, vol. 18 (WIT, Southampton, 2005)
go back to reference J. Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere Publishing, New York, 1988) J. Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere Publishing, New York, 1988)
go back to reference G. Tsatsaronis, Design optimization using exergoeconomics, in Thermodynamic Optimization of Complex Energy Systems, ed. by A. Bejan, E. Mamut. Proceedings of the NATO Advanced Study Institute on Thermodynamics and the Optimization of Complex Energy Systems, Neptun, July 1998. 3, High Technology, vol. 69 (Kluwer, Dordrecht/Boston, 1999), pp. 101–115 G. Tsatsaronis, Design optimization using exergoeconomics, in Thermodynamic Optimization of Complex Energy Systems, ed. by A. Bejan, E. Mamut. Proceedings of the NATO Advanced Study Institute on Thermodynamics and the Optimization of Complex Energy Systems, Neptun, July 1998. 3, High Technology, vol. 69 (Kluwer, Dordrecht/Boston, 1999), pp. 101–115
go back to reference VDI Gesellschaft Energietechnik, Kumulierter Energieaufwand Begriffe, Definitionen, Berechnungsmethoden: Cumulative Energy Demand Terms, Definitions, Methods of Calculation. VDI-Richtlinien, 4600 (Beuth, Berlin, 1997) VDI Gesellschaft Energietechnik, Kumulierter Energieaufwand Begriffe, Definitionen, Berechnungsmethoden: Cumulative Energy Demand Terms, Definitions, Methods of Calculation. VDI-Richtlinien, 4600 (Beuth, Berlin, 1997)
go back to reference A. von Gleich, Outlines of a sustainable metals industry, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 3–39 A. von Gleich, Outlines of a sustainable metals industry, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 3–39
Metadata
Title
Thermodynamics and Resource Consumption: Concepts, Methodologies, and the Case of Copper
Author
Dr. Stefan Gößling-Reisemann
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-1-4020-8939-8_54