Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Thoughts and Tribulations on Bioceramics and Marine Structures

Authors : Besim Ben-Nissan, Andy H. Choi, David W. Green, Ipek Karacan, Sibel Akyol, Sophie Cazalbou

Published in: Marine-Derived Biomaterials for Tissue Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Marine organisms are structured and constituted by materials with a vast range of properties and characteristics that may justify their potential application within the biomedical field. This is demonstrated by the biological effectiveness of marine structures such as corals and shells and sponge skeletons to house self-sustaining musculoskeletal tissues and their ability to promote bone formation though the use of extracts from sponging and nacre seashells. The design and composition of marine structures have been instrumental in the solving vital problems in regenerative medicine through the introduction of basic remedies that provides frameworks and highly accessible sources of osteopromotive analogues of bioceramic monoliths, nanofibres, micro and macrospheres. The clinical success of any future regenerative implants will be dependent on the production of highly proficient scaffolds that biologically operates at the nano-, micro- and macroscopic levels. Moreover, the implant will also need to coordinate, assemble, and organize cells into tissues as well as releasing encapsulated chemical signals in a targeted way and convey them into the body. As a result, an increasing number of different types of compounds are being isolated from aquatic organisms and transformed into products for health applications, including controlled drug delivery and tissue engineering devices. Despite the fact that they are extremely effective, the development of these materials has their drawbacks that needs be addressed. This chapter reviews the current bioceramics and natural marine structures including their structure, morphology, and applications in regenerative medicine, bone grafts, and drug delivery. In addition, the extraction of biological materials such as proteins from marine materials will also be discussed. An example of this specific biomimicry is provided by filtering the microskeleton of Foraminifera and coralline microspheres. New selected strategies based on our research as well as the works of others concerning the engineering of new bone tissues based on biomimicry will be also examined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ben-Nissan B, Green DW (2013) Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and rep air and slow delivery of therapeutic drugs, proteins and genes. In: Kim SK (ed) Marine biomaterials. Taylor and Francis/CSR Books, Boca Raton, pp 575–602CrossRef Ben-Nissan B, Green DW (2013) Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and rep air and slow delivery of therapeutic drugs, proteins and genes. In: Kim SK (ed) Marine biomaterials. Taylor and Francis/CSR Books, Boca Raton, pp 575–602CrossRef
3.
go back to reference Ben-Nissan B, Choi AH (2006) Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. Nanomedicine 1:311–319CrossRef Ben-Nissan B, Choi AH (2006) Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. Nanomedicine 1:311–319CrossRef
4.
go back to reference Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61CrossRef Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61CrossRef
5.
go back to reference Choi AH, Ben-Nissan B, Matinlinna JP et al (2013) Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res 92:853–859CrossRef Choi AH, Ben-Nissan B, Matinlinna JP et al (2013) Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res 92:853–859CrossRef
6.
go back to reference Choi AH, Ben-Nissan B (2015) Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine 10:2249–2261CrossRef Choi AH, Ben-Nissan B (2015) Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine 10:2249–2261CrossRef
7.
go back to reference Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147CrossRef Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147CrossRef
8.
go back to reference Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15:50–60CrossRef Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15:50–60CrossRef
9.
go back to reference Clark HA, Hoyer M, Philbert MA et al (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836CrossRef Clark HA, Hoyer M, Philbert MA et al (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836CrossRef
10.
go back to reference Park EJ, Brasuel M, Behrend C et al (2003) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791CrossRef Park EJ, Brasuel M, Behrend C et al (2003) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791CrossRef
11.
go back to reference Gavalas VG, Law SA, Christopher Ball J et al (2004) Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal Biochem 329:247–252CrossRef Gavalas VG, Law SA, Christopher Ball J et al (2004) Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal Biochem 329:247–252CrossRef
12.
go back to reference Schroeder A, Turjeman K, Schroeder JE et al (2010) Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv 7:1175–1189CrossRef Schroeder A, Turjeman K, Schroeder JE et al (2010) Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv 7:1175–1189CrossRef
13.
go back to reference Rizwan SB, Boyd BJ, Rades T et al (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144CrossRef Rizwan SB, Boyd BJ, Rades T et al (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144CrossRef
14.
go back to reference Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRef Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRef
15.
go back to reference Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124CrossRef Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124CrossRef
16.
go back to reference Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169CrossRef Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169CrossRef
17.
go back to reference Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946CrossRef Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946CrossRef
18.
go back to reference Chou J, Shimmon R, Ben-Nissan B (2009) Bisphosphonate determination using 1H-NMR spectroscopy for biomedical applications. J Tissue Eng Regen Med 3:92–96CrossRef Chou J, Shimmon R, Ben-Nissan B (2009) Bisphosphonate determination using 1H-NMR spectroscopy for biomedical applications. J Tissue Eng Regen Med 3:92–96CrossRef
19.
go back to reference Ben-Nissan B, Macha I, Cazalbou S et al (2016) Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine 11:531–544CrossRef Ben-Nissan B, Macha I, Cazalbou S et al (2016) Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine 11:531–544CrossRef
20.
go back to reference Palazzo B, Iafisco M, Laforgia M et al (2007) Biomimetic hydroxyapatite—drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188CrossRef Palazzo B, Iafisco M, Laforgia M et al (2007) Biomimetic hydroxyapatite—drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188CrossRef
21.
go back to reference Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318CrossRef Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318CrossRef
22.
go back to reference Oonishi H, Clarke IC, Good V et al (2003) Needs of bioceramics to longevity of total joint arthroplasty. Key Eng Mater 240–242:735–754CrossRef Oonishi H, Clarke IC, Good V et al (2003) Needs of bioceramics to longevity of total joint arthroplasty. Key Eng Mater 240–242:735–754CrossRef
23.
go back to reference Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C Mater Biol Appl 27:546–550CrossRef Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C Mater Biol Appl 27:546–550CrossRef
24.
go back to reference Khalyfa A, Vogt S, Weisser J et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18:909–916CrossRef Khalyfa A, Vogt S, Weisser J et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18:909–916CrossRef
25.
go back to reference Gomes de Sousa FC, Evans JRG (2005) Tubular hydroxyapatite scaffolds. Adv Appl Ceram 104:30–34CrossRef Gomes de Sousa FC, Evans JRG (2005) Tubular hydroxyapatite scaffolds. Adv Appl Ceram 104:30–34CrossRef
26.
go back to reference Green D, Walsh D, Yang X et al (2004) Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212CrossRef Green D, Walsh D, Yang X et al (2004) Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212CrossRef
27.
go back to reference Kanczler JM, Sura HS, Magnay J et al (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250CrossRef Kanczler JM, Sura HS, Magnay J et al (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250CrossRef
28.
go back to reference Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353CrossRef Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353CrossRef
29.
go back to reference Townley H, Parker A, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18:369–374CrossRef Townley H, Parker A, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18:369–374CrossRef
30.
go back to reference Green D, Leveque I, Walsh D et al (2005) Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Adv Funct Mater 15:917–923CrossRef Green D, Leveque I, Walsh D et al (2005) Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Adv Funct Mater 15:917–923CrossRef
31.
go back to reference Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207CrossRef Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207CrossRef
32.
go back to reference Kumar MN, Muzzarelli RA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRef Kumar MN, Muzzarelli RA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRef
33.
go back to reference Muzzarelli RAA, Morganti P, Morganti G et al (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70:274–284CrossRef Muzzarelli RAA, Morganti P, Morganti G et al (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70:274–284CrossRef
34.
go back to reference Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRef Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRef
35.
go back to reference Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9CrossRef Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9CrossRef
36.
go back to reference Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53CrossRef Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53CrossRef
37.
go back to reference Chan AW, Neufeld RJ (2010) Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials 31:9040–9047CrossRef Chan AW, Neufeld RJ (2010) Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials 31:9040–9047CrossRef
38.
go back to reference Choi AH, Ben-Nissan B, Conway RC et al (2014) Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering, vol 2. Springer, Heidelberg, pp 485–509 Choi AH, Ben-Nissan B, Conway RC et al (2014) Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering, vol 2. Springer, Heidelberg, pp 485–509
39.
go back to reference Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858CrossRef Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858CrossRef
40.
go back to reference Szarpak A, Cui D, Dubreuil F et al (2010) Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules 11:713–720CrossRef Szarpak A, Cui D, Dubreuil F et al (2010) Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules 11:713–720CrossRef
41.
go back to reference Sæther HV, Holme HK, Maurstad G et al (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821CrossRef Sæther HV, Holme HK, Maurstad G et al (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821CrossRef
42.
go back to reference Du Y, Lo E, Ali S et al (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci U S A 105:9522–9527CrossRef Du Y, Lo E, Ali S et al (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci U S A 105:9522–9527CrossRef
43.
go back to reference Ingber DE (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57CrossRef Ingber DE (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57CrossRef
44.
go back to reference Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRef Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRef
45.
go back to reference Needleman DJ, Ojeda-Lopez MA, Raviv U et al (2004) Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc Natl Acad Sci U S A 101:16099–16103CrossRef Needleman DJ, Ojeda-Lopez MA, Raviv U et al (2004) Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc Natl Acad Sci U S A 101:16099–16103CrossRef
46.
go back to reference Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432CrossRef Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432CrossRef
47.
go back to reference Gallagher JT, Turnbull JE, Lyon M (1992) Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int J Biochem 24:553–560CrossRef Gallagher JT, Turnbull JE, Lyon M (1992) Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int J Biochem 24:553–560CrossRef
48.
go back to reference Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef
49.
go back to reference Chollet C, Lazare S, Guillemot F et al (2010) Impact of RGD micro-patterns on cell adhesion. Colloids Surf B Biointerfaces 75:107–114CrossRef Chollet C, Lazare S, Guillemot F et al (2010) Impact of RGD micro-patterns on cell adhesion. Colloids Surf B Biointerfaces 75:107–114CrossRef
50.
go back to reference Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79CrossRef Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79CrossRef
51.
go back to reference Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575CrossRef Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575CrossRef
52.
go back to reference Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRef Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRef
53.
go back to reference Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRef
54.
go back to reference Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29:317–323CrossRef Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29:317–323CrossRef
55.
go back to reference Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRef Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRef
56.
go back to reference Ho MH, Wang DM, Hsieh HJ et al (2005) Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 26:3197–3206CrossRef Ho MH, Wang DM, Hsieh HJ et al (2005) Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 26:3197–3206CrossRef
57.
go back to reference Jeon O, Bouhadir KH, Mansour JM et al (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734CrossRef Jeon O, Bouhadir KH, Mansour JM et al (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734CrossRef
58.
go back to reference Lévêque I, Rhodes KH, Mann S (2002) Biomineral-inspired fabrication of semi-permeable calcium phosphate–polysaccharide microcapsules. J Mater Chem 12:2178–2180CrossRef Lévêque I, Rhodes KH, Mann S (2002) Biomineral-inspired fabrication of semi-permeable calcium phosphate–polysaccharide microcapsules. J Mater Chem 12:2178–2180CrossRef
59.
go back to reference Weiner S (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit Rev Biochem 20:365–408CrossRef Weiner S (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit Rev Biochem 20:365–408CrossRef
60.
go back to reference Collier JH (2008) Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4:2310–2315CrossRef Collier JH (2008) Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4:2310–2315CrossRef
61.
go back to reference Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418CrossRef Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418CrossRef
62.
go back to reference Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518CrossRef Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518CrossRef
63.
go back to reference Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ et al (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29:2757–2766CrossRef Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ et al (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29:2757–2766CrossRef
64.
go back to reference Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York
65.
go back to reference Weiner S (2008) Biomineralization: a structural perspective. J Struct Biol 163:229–234CrossRef Weiner S (2008) Biomineralization: a structural perspective. J Struct Biol 163:229–234CrossRef
66.
go back to reference Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112CrossRef Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112CrossRef
67.
go back to reference Mooney DJ, Boontheekul T, Chen R et al (2005) Actively regulating bioengineered tissue and organ formation. Orthod Craniofac Res 8:141–144CrossRef Mooney DJ, Boontheekul T, Chen R et al (2005) Actively regulating bioengineered tissue and organ formation. Orthod Craniofac Res 8:141–144CrossRef
68.
go back to reference Hoffman AS, Stayton PS, Press O et al (2001) Bioinspired polymers that control intracellular drug delivery. Biotechnol Bioprocess Eng 6:205–212CrossRef Hoffman AS, Stayton PS, Press O et al (2001) Bioinspired polymers that control intracellular drug delivery. Biotechnol Bioprocess Eng 6:205–212CrossRef
69.
go back to reference Bianco P, Kuznetsov SA, Riminucci M et al (2006) Postnatal skeletal stem cells. In: Klimanskaya I, Lanza R (eds) Adult stem cells. Methods in enzymology, vol 419. Elsevier Academic Press Inc., California, pp 117–148CrossRef Bianco P, Kuznetsov SA, Riminucci M et al (2006) Postnatal skeletal stem cells. In: Klimanskaya I, Lanza R (eds) Adult stem cells. Methods in enzymology, vol 419. Elsevier Academic Press Inc., California, pp 117–148CrossRef
70.
go back to reference Green D, Partridge K, Leveque I et al (2005) Plasmid DNA encapsulation, delivery and transfection using biomineralized polysaccharide capsules. Int J Exp Pathol 86:A6 Green D, Partridge K, Leveque I et al (2005) Plasmid DNA encapsulation, delivery and transfection using biomineralized polysaccharide capsules. Int J Exp Pathol 86:A6
71.
go back to reference Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37CrossRef Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37CrossRef
72.
go back to reference Tros de Ilarduya C, García L, Düzgünes N (2010) Liposomes and lipopolymeric carriers for gene delivery. J Microencapsul 27:602–608CrossRef Tros de Ilarduya C, García L, Düzgünes N (2010) Liposomes and lipopolymeric carriers for gene delivery. J Microencapsul 27:602–608CrossRef
Metadata
Title
Thoughts and Tribulations on Bioceramics and Marine Structures
Authors
Besim Ben-Nissan
Andy H. Choi
David W. Green
Ipek Karacan
Sibel Akyol
Sophie Cazalbou
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_1

Premium Partners