Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2018

20-07-2018

Three-dimensional Linear Eddy Modeling of a Turbulent Lifted Hydrogen Jet Flame in a Vitiated Co-flow

Authors: Fredrik Grøvdal, Sigurd Sannan, Jyh-Yuan Chen, Alan R. Kerstein, Terese Løvås

Published in: Flow, Turbulence and Combustion | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new methodology for modeling and simulation of reactive flows is reported in which a 3D formulation of the Linear Eddy Model (LEM3D) is used as a post-processing tool for an initial RANS simulation. In this hybrid approach, LEM3D complements RANS with unsteadiness and small-scale resolution in a computationally efficient manner. To demonstrate the RANS-LEM3D model, the hybrid model is applied to a lifted turbulent N2-diluted hydrogen jet flame in a vitiated co-flow of hot products from lean H2/air combustion. In the present modeling approach, mean-flow information from RANS provides model input to LEM3D, which returns the scalar statistics needed for more accurate mixing and reaction calculations. Flame lift-off heights and flame structure are investigated in detail, along with other characteristics not available from RANS alone, such as the instantaneous and detailed species profiles and small-scale mixing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For non-reacting flows the counter gradient assumption implies that the averaged transport \(\overline {\rho \textbf {u}^{\prime \prime }\phi ^{\prime \prime }}\) of a scalar ϕ is oriented in a direction opposite to the normal gradient of the turbulent diffusion.
 
Literature
1.
go back to reference Kerstein, A.R.: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)CrossRef Kerstein, A.R.: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)CrossRef
2.
go back to reference Kerstein, A.R.: Linear-eddy modelling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing. J. Fluid Mech. 240, 289–313 (1992)CrossRef Kerstein, A.R.: Linear-eddy modelling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing. J. Fluid Mech. 240, 289–313 (1992)CrossRef
3.
go back to reference Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)MathSciNetCrossRef Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)MathSciNetCrossRef
4.
go back to reference Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.: An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition. Proc. Comb. Inst. 33, 1515–1522 (2011)CrossRef Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.: An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition. Proc. Comb. Inst. 33, 1515–1522 (2011)CrossRef
5.
go back to reference Sen, B.A., Menon, S.: Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame 157, 62–74 (2010)CrossRef Sen, B.A., Menon, S.: Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame 157, 62–74 (2010)CrossRef
6.
go back to reference Sankaran, V., Menon, S.: Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Comb. Inst. 30, 575–582 (2005)CrossRef Sankaran, V., Menon, S.: Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Comb. Inst. 30, 575–582 (2005)CrossRef
7.
go back to reference Sannan, S., Weydahl, T., Kerstein, A.R.: Stochastic simulation of scalar mixing capturing unsteadiness and small-scale structure based on mean-flow properties. Flow Turbul. Combust. 90, 189–216 (2013)CrossRef Sannan, S., Weydahl, T., Kerstein, A.R.: Stochastic simulation of scalar mixing capturing unsteadiness and small-scale structure based on mean-flow properties. Flow Turbul. Combust. 90, 189–216 (2013)CrossRef
8.
go back to reference Weydahl, T.: A Framework for Mixing-Reaction Closure with the Linear Eddy Model. Ph.D. thesis, NTNU Trondheim (2010) Weydahl, T.: A Framework for Mixing-Reaction Closure with the Linear Eddy Model. Ph.D. thesis, NTNU Trondheim (2010)
9.
go back to reference Cabra, R., Myhrvold, T., Chen, J., Dibble, R., Karpetis, A., Barlow, R.: Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Comb Inst. 29, 1881–1888 (2002)CrossRef Cabra, R., Myhrvold, T., Chen, J., Dibble, R., Karpetis, A., Barlow, R.: Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Comb Inst. 29, 1881–1888 (2002)CrossRef
10.
go back to reference Cabra, R.: Turbulent Jet Flames into a Vitiated Coflow. Ph.D. thesis, UC Berkeley (2003) Cabra, R.: Turbulent Jet Flames into a Vitiated Coflow. Ph.D. thesis, UC Berkeley (2003)
11.
go back to reference Gordon, R.L.: A numerical and Experimental Investigation of Autoignition, Ph.D. Thesis, University of Sydney (2008) Gordon, R.L.: A numerical and Experimental Investigation of Autoignition, Ph.D. Thesis, University of Sydney (2008)
12.
go back to reference Cheng, T., Wehrmeyer, J., Pitz, R.: Conditional analysis of lifted hydrogen jet diffusion flame experimental data and comparison to laminar flame solutions. Combust. Flame 150, 340–354 (2007)CrossRef Cheng, T., Wehrmeyer, J., Pitz, R.: Conditional analysis of lifted hydrogen jet diffusion flame experimental data and comparison to laminar flame solutions. Combust. Flame 150, 340–354 (2007)CrossRef
13.
go back to reference North, A.: Experimental Investigations of Partially Premixed Hydrogen Combustion in Gas Turbine Environments. Ph.D. thesis, UC Berkeley (2013) North, A.: Experimental Investigations of Partially Premixed Hydrogen Combustion in Gas Turbine Environments. Ph.D. thesis, UC Berkeley (2013)
14.
go back to reference Myhrvold, T., Ertesvåg, I., Gran, I., Cabra, R., Chen, J.-Y.: A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178, 1001–1030 (2006)CrossRef Myhrvold, T., Ertesvåg, I., Gran, I., Cabra, R., Chen, J.-Y.: A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178, 1001–1030 (2006)CrossRef
15.
go back to reference Lee, J., Kim, Y.: DQMOM Based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition. Int. J. Hydrog. Energy 37, 18498–18508 (2012)CrossRef Lee, J., Kim, Y.: DQMOM Based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition. Int. J. Hydrog. Energy 37, 18498–18508 (2012)CrossRef
16.
go back to reference Masri, A., Cao, R., Pope, S., Goldin, G.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Modell. 8, 1–22 (2004)CrossRef Masri, A., Cao, R., Pope, S., Goldin, G.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Modell. 8, 1–22 (2004)CrossRef
17.
go back to reference Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)CrossRef Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)CrossRef
18.
go back to reference Magnussen, B.F.: Modeling of NOx and Soot Formation by the Eddy Dissipation Concept. International of Flame Research Foundation (1989) Magnussen, B.F.: Modeling of NOx and Soot Formation by the Eddy Dissipation Concept. International of Flame Research Foundation (1989)
19.
go back to reference Johannessen, B., North, A., Dibble, R., Løvås, T.: Experimental studies of autoignition events in unsteady hydrogen–air flames. Combust. Flame 162, 3210–3219 (2015)CrossRef Johannessen, B., North, A., Dibble, R., Løvås, T.: Experimental studies of autoignition events in unsteady hydrogen–air flames. Combust. Flame 162, 3210–3219 (2015)CrossRef
20.
go back to reference Yoo, C.S., Sankaran, R., Chen, J.H.: Direct numerical simulation of turbulent lifted hydrogen jet flame in heated coflow Yoo, C.S., Sankaran, R., Chen, J.H.: Direct numerical simulation of turbulent lifted hydrogen jet flame in heated coflow
21.
go back to reference Dibble, R.W., Long, M.B.: Investigation of differential diffusion in turbulent jet flows using planar laser rayleigh scattering. Combust. Flame 143(4), 644–649 (2005)CrossRef Dibble, R.W., Long, M.B.: Investigation of differential diffusion in turbulent jet flows using planar laser rayleigh scattering. Combust. Flame 143(4), 644–649 (2005)CrossRef
22.
go back to reference Sannan, S., Kerstein, A.R.: Differential molecular diffusion in a hydrogen-rich jet. Energy Procedia 86, 304–314 (2016)CrossRef Sannan, S., Kerstein, A.R.: Differential molecular diffusion in a hydrogen-rich jet. Energy Procedia 86, 304–314 (2016)CrossRef
23.
go back to reference Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRef Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRef
24.
go back to reference Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: Vode: a variable-coefficient ode solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)MathSciNetCrossRef Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: Vode: a variable-coefficient ode solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)MathSciNetCrossRef
25.
go back to reference Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, p 413. Wiley, NY (1960) Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, p 413. Wiley, NY (1960)
26.
go back to reference Oevermann, M., Schmidt, H., Kerstein, A.: Investigation of autoignition under thermal stratification using Linear Eddy Modeling. Combust. Flame 155, 370–379 (2008)CrossRef Oevermann, M., Schmidt, H., Kerstein, A.: Investigation of autoignition under thermal stratification using Linear Eddy Modeling. Combust. Flame 155, 370–379 (2008)CrossRef
27.
go back to reference Lyons, K.M.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Progress Energy Combust. Sci. 33, 211–231 (2007)CrossRef Lyons, K.M.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Progress Energy Combust. Sci. 33, 211–231 (2007)CrossRef
28.
go back to reference Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)CrossRef Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)CrossRef
29.
go back to reference Tennekes, H., Lumley, J.L: A First Course in Turbulence. MIT Press, Cambridge (1972)MATH Tennekes, H., Lumley, J.L: A First Course in Turbulence. MIT Press, Cambridge (1972)MATH
30.
go back to reference Bilger, R.: The structure of turbulent nonpremixed flames. Proc. Comb. Inst. 22, 475–488 (1989)CrossRef Bilger, R.: The structure of turbulent nonpremixed flames. Proc. Comb. Inst. 22, 475–488 (1989)CrossRef
32.
go back to reference Jozefik, Z., Kerstein, A.R., Schmidt, H., Lyra, S., Kolla, H., Chen, J.H.: One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS. Combust. Flame 162, 2999–3015 (2015)CrossRef Jozefik, Z., Kerstein, A.R., Schmidt, H., Lyra, S., Kolla, H., Chen, J.H.: One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS. Combust. Flame 162, 2999–3015 (2015)CrossRef
Metadata
Title
Three-dimensional Linear Eddy Modeling of a Turbulent Lifted Hydrogen Jet Flame in a Vitiated Co-flow
Authors
Fredrik Grøvdal
Sigurd Sannan
Jyh-Yuan Chen
Alan R. Kerstein
Terese Løvås
Publication date
20-07-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9963-x

Other articles of this Issue 4/2018

Flow, Turbulence and Combustion 4/2018 Go to the issue

OriginalPaper

Preface

Premium Partners