Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3/2023

02-02-2023 | Research

Three-Dimensional Numerical Simulations to Extend the Measurement Range of Laminar Burning Velocity of Heat Flux Burners

Author: Vinod Kumar Yadav

Published in: Flow, Turbulence and Combustion | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, three-dimensional computational technique is adopted to predict the behavior of flames stabilized over the heat flux burner. The reactive fluid dynamics simulations were performed with ANSYS Fluent®. The configuration of the burner, with prime focus on effect of porosity, is altered to visualize its effect on the flatness of the flames developed over the heat flux burner. The results indicated that, to stabilize wrinkle-free flat stoichiometric flames over the top of burner plate, the burner with high porosity (0.51) is superior to baseline burner with low porosity (0.46). In addition, increased porosity also makes the burner more sensitive for unburnt gas mixtures passing through them. This was verified through parameters like reaction rates and stand-off distances. Furthermore, with an increase in burner plate porosity (reduced solid area) from 0.46 to 0.51, the flame appears closer to the top surface of burner plate to ensure the heat loss required for its stabilization. Due to this, the decomposition of CH4 and peak of CH3 come closer to the top surface of the burner plate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abian, M., Lopez, J.G., Bilbao, R., Alzueta, M.U.: Effect of different concentration levels of CO2 and H2O on the oxidation of CO: experiments and modeling. Proc. Comb. Inst. 33, 317–323 (2011)CrossRef Abian, M., Lopez, J.G., Bilbao, R., Alzueta, M.U.: Effect of different concentration levels of CO2 and H2O on the oxidation of CO: experiments and modeling. Proc. Comb. Inst. 33, 317–323 (2011)CrossRef
go back to reference Altay, H.M., Kedia, K.S., Speth, R.L., Ghoniem, A.F.: Two-dimensional simulations of steady perforated-plate stabilized premixed flames. Combust. Theor. Model. 14(1), 125–154 (2010)CrossRefMATH Altay, H.M., Kedia, K.S., Speth, R.L., Ghoniem, A.F.: Two-dimensional simulations of steady perforated-plate stabilized premixed flames. Combust. Theor. Model. 14(1), 125–154 (2010)CrossRefMATH
go back to reference ANSYS Chemkin-Pro® Release 17.0 (Chemkin-Pro 15151) ANSYS, Inc. (2016–01–11) ANSYS Chemkin-Pro® Release 17.0 (Chemkin-Pro 15151) ANSYS, Inc. (2016–01–11)
go back to reference ANSYS Fluent® Release 15.0. ANSYS, Inc. USA. (ANSYS R15.0). (2014) ANSYS Fluent® Release 15.0. ANSYS, Inc. USA. (ANSYS R15.0). (2014)
go back to reference Bongers, H., De Goey, L.P.H.: The effect of simplified transport modeling on the burning velocity of laminar premixed flames. Combust. Sci. Technol. 175(10), 1915–1928 (2003)CrossRef Bongers, H., De Goey, L.P.H.: The effect of simplified transport modeling on the burning velocity of laminar premixed flames. Combust. Sci. Technol. 175(10), 1915–1928 (2003)CrossRef
go back to reference Bosschaart, K.J., Versluis, M., Kinkker, R., Meer, T.H.V.D., Schreel, K.R.A.M., de Goey, L.P.H., Steenhoven, A.A.V.: The heat flux method for producing burner stabilized adiabatic flames: an evaluation with CARS thermometry. Combust. Sci. Technol. 169, 69–87 (2001)CrossRef Bosschaart, K.J., Versluis, M., Kinkker, R., Meer, T.H.V.D., Schreel, K.R.A.M., de Goey, L.P.H., Steenhoven, A.A.V.: The heat flux method for producing burner stabilized adiabatic flames: an evaluation with CARS thermometry. Combust. Sci. Technol. 169, 69–87 (2001)CrossRef
go back to reference Bosschaart KJ. Analysis of heat flux method for measuring burning velocities [Ph.D. Thesis]. Eindhoven University of Technology 2002. Bosschaart KJ. Analysis of heat flux method for measuring burning velocities [Ph.D. Thesis]. Eindhoven University of Technology 2002.
go back to reference Burrell, R.R., Zhao, R., Lee, D.J., Burbano, H., Egolfopoulos, F.N.: Two-dimensional effects in counterflow methane flames. Proc. Comb. Inst. 36, 1387–1394 (2017)CrossRef Burrell, R.R., Zhao, R., Lee, D.J., Burbano, H., Egolfopoulos, F.N.: Two-dimensional effects in counterflow methane flames. Proc. Comb. Inst. 36, 1387–1394 (2017)CrossRef
go back to reference de Goey, L.P.H., Somers, L.M.T., Bosch, W.M.M.L., Mallens, R.M.M.: Modeling of the small scale structure of flat burner-stabilized flames. Combust. Sci. Technol. 104(4), 4–6 (1995) de Goey, L.P.H., Somers, L.M.T., Bosch, W.M.M.L., Mallens, R.M.M.: Modeling of the small scale structure of flat burner-stabilized flames. Combust. Sci. Technol. 104(4), 4–6 (1995)
go back to reference Goodwin, D.G., Guide, C.U.: California Institute of Technology. Pasadena, CA (2001) Goodwin, D.G., Guide, C.U.: California Institute of Technology. Pasadena, CA (2001)
go back to reference Goswami, M., Coumans, K., Bastiaans, R.J.M., Konnov, A.A., de Goey, L.P.H.: Numerical simulations of flat laminar premixed methane-air flames at elevated pressure. Combust. Sci. Technol. 186, 1447–1459 (2014)CrossRef Goswami, M., Coumans, K., Bastiaans, R.J.M., Konnov, A.A., de Goey, L.P.H.: Numerical simulations of flat laminar premixed methane-air flames at elevated pressure. Combust. Sci. Technol. 186, 1447–1459 (2014)CrossRef
go back to reference Halouane, Y., Dehbi, A.: CFD simulations of premixed hydrogen combustion using the eddy dissipation and the turbulent flame closure models. Int. J. Hydrog. Energy 42(34), 21990–22004 (2017)CrossRef Halouane, Y., Dehbi, A.: CFD simulations of premixed hydrogen combustion using the eddy dissipation and the turbulent flame closure models. Int. J. Hydrog. Energy 42(34), 21990–22004 (2017)CrossRef
go back to reference Ji, C., Liu, X., Wang, S., Gao, B., Yang, J.: A laminar burning velocity correlation for combustion simulation of hydrogen-enriched ethanol engines. Fuel 133, 139–142 (2014)CrossRef Ji, C., Liu, X., Wang, S., Gao, B., Yang, J.: A laminar burning velocity correlation for combustion simulation of hydrogen-enriched ethanol engines. Fuel 133, 139–142 (2014)CrossRef
go back to reference Jithin, E.V., Kishore, V.R., Varghese, R.J.: Three-dimensional simulations of steady perforated-plate stabilized propane-air premixed flames. Energy Fuels 28(8), 5415–5425 (2014)CrossRef Jithin, E.V., Kishore, V.R., Varghese, R.J.: Three-dimensional simulations of steady perforated-plate stabilized propane-air premixed flames. Energy Fuels 28(8), 5415–5425 (2014)CrossRef
go back to reference Kaufmann, D., Roth, P.: Numerical simulation of one-dimensional laminar flames propagating into reacting premixed gases. Combust. Flame 80, 385–394 (1990)CrossRef Kaufmann, D., Roth, P.: Numerical simulation of one-dimensional laminar flames propagating into reacting premixed gases. Combust. Flame 80, 385–394 (1990)CrossRef
go back to reference Kedia, K.S., Ghoniem, A.F.: Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate. Combust. Flame 159, 1055–1069 (2012)CrossRef Kedia, K.S., Ghoniem, A.F.: Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate. Combust. Flame 159, 1055–1069 (2012)CrossRef
go back to reference Kee RJ, Grear JF, Smooke MD, Miller JA. A FORTRAN program for modeling steady laminar one-dimensional premixed flames. Technical report SAND85–8240, Sandia National Laboratories, Livermore, 1985. Kee RJ, Grear JF, Smooke MD, Miller JA. A FORTRAN program for modeling steady laminar one-dimensional premixed flames. Technical report SAND85–8240, Sandia National Laboratories, Livermore, 1985.
go back to reference Kishore, V.R., Ravi, M.R., Ray, A.: Adiabatic burning velocity and cellular characteristics of H2 – CO - CO2 - air mixtures. Combust. Flame 158, 2149–2164 (2011)CrossRef Kishore, V.R., Ravi, M.R., Ray, A.: Adiabatic burning velocity and cellular characteristics of H2 – CO - CO2 - air mixtures. Combust. Flame 158, 2149–2164 (2011)CrossRef
go back to reference Konnov, A.A., Riemeijer, R., Kornilov, V.N., de Goey, L.P.H.: 2D effects in laminar premixed flames stabilized on a flat flame burner. Exp. Therm. Fluid Sci. 47, 213–223 (2013)CrossRef Konnov, A.A., Riemeijer, R., Kornilov, V.N., de Goey, L.P.H.: 2D effects in laminar premixed flames stabilized on a flat flame burner. Exp. Therm. Fluid Sci. 47, 213–223 (2013)CrossRef
go back to reference Kuznetsov, M., Redlinger, R., Breitung, W., Grune, J., Friedrich, A., Ichikawa, N.: Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures. Proc. Comb. Inst. 33(1), 895–903 (2011)CrossRef Kuznetsov, M., Redlinger, R., Breitung, W., Grune, J., Friedrich, A., Ichikawa, N.: Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures. Proc. Comb. Inst. 33(1), 895–903 (2011)CrossRef
go back to reference Lapointe, S., Whitesides, R.A., McNenly, M.J.: Sparse, iterative simulation methods for one-dimensional laminar flames. Combust. Flame 204, 23–32 (2019)CrossRef Lapointe, S., Whitesides, R.A., McNenly, M.J.: Sparse, iterative simulation methods for one-dimensional laminar flames. Combust. Flame 204, 23–32 (2019)CrossRef
go back to reference Lavadera, M.L., Pelucchi, M., Konnov, A.A.: The influence of ammonia on the laminar burning velocities of methylcyclohexane and toluene: an experimental and kinetic modeling study. Combust. Flame 237, 111839 (2022)CrossRef Lavadera, M.L., Pelucchi, M., Konnov, A.A.: The influence of ammonia on the laminar burning velocities of methylcyclohexane and toluene: an experimental and kinetic modeling study. Combust. Flame 237, 111839 (2022)CrossRef
go back to reference Maaren, V., Thung, D.S., de Goey, L.P.H.: Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol. 96(4), 327–344 (1994)CrossRef Maaren, V., Thung, D.S., de Goey, L.P.H.: Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol. 96(4), 327–344 (1994)CrossRef
go back to reference Maas, U., Warnatz, J.: Ignition processes in hydrogen oxygen mixtures. Combust. Flame 74, 53–69 (1988)CrossRef Maas, U., Warnatz, J.: Ignition processes in hydrogen oxygen mixtures. Combust. Flame 74, 53–69 (1988)CrossRef
go back to reference Mallens, R.M.M., De Goey, L.P.H.: Flash-back of laminar premixed methane/air flames on slit and tube burners. Combust. Sci. Technol. 136(1), 41–54 (1998)CrossRef Mallens, R.M.M., De Goey, L.P.H.: Flash-back of laminar premixed methane/air flames on slit and tube burners. Combust. Sci. Technol. 136(1), 41–54 (1998)CrossRef
go back to reference Mameri, A., Tabet, F.: Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. Int. J. Hydrog. Energy 41, 2011–2022 (2016)CrossRef Mameri, A., Tabet, F.: Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. Int. J. Hydrog. Energy 41, 2011–2022 (2016)CrossRef
go back to reference Mohammed, A.N., Juhany, K.A., Kumar, S., Kishore, V.R., Mohammed, A.: Effects of CO2/N2 dilution on laminar burning velocity of stoichiometric DME-air mixture at elevated temperatures. J. Hazard. Mater. 333, 215–221 (2017)CrossRef Mohammed, A.N., Juhany, K.A., Kumar, S., Kishore, V.R., Mohammed, A.: Effects of CO2/N2 dilution on laminar burning velocity of stoichiometric DME-air mixture at elevated temperatures. J. Hazard. Mater. 333, 215–221 (2017)CrossRef
go back to reference Nonaka, H.O.B., Pereira, F.M.: Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas. Fuel 182, 382–390 (2016)CrossRef Nonaka, H.O.B., Pereira, F.M.: Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas. Fuel 182, 382–390 (2016)CrossRef
go back to reference Varghese, R.J., Kishore, V.R., Akram, M., Yoon, Y., Kumar, S.: Burning velocities of DME (dimethyl ether)-air premixed flames at elevated temperatures. Energy 126, 34–41 (2017)CrossRef Varghese, R.J., Kishore, V.R., Akram, M., Yoon, Y., Kumar, S.: Burning velocities of DME (dimethyl ether)-air premixed flames at elevated temperatures. Energy 126, 34–41 (2017)CrossRef
go back to reference Veetil, J.E., Rajith, C.V., Velamati, R.K.: Numerical simulations of steady perforated-plate stabilized Syngas air premixed flames. Int. J. Hydrog. Energy 41, 13747–13757 (2016)CrossRef Veetil, J.E., Rajith, C.V., Velamati, R.K.: Numerical simulations of steady perforated-plate stabilized Syngas air premixed flames. Int. J. Hydrog. Energy 41, 13747–13757 (2016)CrossRef
go back to reference Veetil, J.E., Aravind, B., Mohammad, A., Kumar, S., Velamati, R.K.: Effect of hole pattern on the structure of small scale perorated plate burner flames. Fuel 216, 722–733 (2018)CrossRef Veetil, J.E., Aravind, B., Mohammad, A., Kumar, S., Velamati, R.K.: Effect of hole pattern on the structure of small scale perorated plate burner flames. Fuel 216, 722–733 (2018)CrossRef
go back to reference Wang, S., Wang, Z., He, Y., Han, X., Sun, Z., Zhu, Y., Costa, M.: Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel 259, 116152 (2020a)CrossRef Wang, S., Wang, Z., He, Y., Han, X., Sun, Z., Zhu, Y., Costa, M.: Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel 259, 116152 (2020a)CrossRef
go back to reference Wang, Z., Han, X., He, Y., Wang, S., Ji, R., Zhu, Y., Cen, K.: Investigation of flame and burner plate interaction during the heat flux method used for laminar burning velocity measurement. Fuel 266, 117051 (2020b)CrossRef Wang, Z., Han, X., He, Y., Wang, S., Ji, R., Zhu, Y., Cen, K.: Investigation of flame and burner plate interaction during the heat flux method used for laminar burning velocity measurement. Fuel 266, 117051 (2020b)CrossRef
go back to reference Yadav, V.K.: Numerical exploration of an alternative fuel having combustion characteristics identical to methane. Mater. Today: Proc. 25(4), 551–556 (2020) Yadav, V.K.: Numerical exploration of an alternative fuel having combustion characteristics identical to methane. Mater. Today: Proc. 25(4), 551–556 (2020)
go back to reference Yadav, V.K., Ray, A., Ravi, M.R.: Experimental and computational investigation of the laminar burning velocity of hydrogen-enriched biogas. Fuel 235, 810–821 (2019a)CrossRef Yadav, V.K., Ray, A., Ravi, M.R.: Experimental and computational investigation of the laminar burning velocity of hydrogen-enriched biogas. Fuel 235, 810–821 (2019a)CrossRef
go back to reference Yadav VK, Khan AR, Srivastava S, Yadav V. Experimental, computational, and chemical kinetic analysis to compare the flame structure of methane-air with biogas–H2–Air. In: Prasad, A., Gupta, S., Tyagi, R. (eds) Advances in Engineering Design. Lecture Notes in Mechanical Engineering. Springer, Singapore. 2019b: 259–268. Yadav VK, Khan AR, Srivastava S, Yadav V. Experimental, computational, and chemical kinetic analysis to compare the flame structure of methane-air with biogas–H2–Air. In: Prasad, A., Gupta, S., Tyagi, R. (eds) Advances in Engineering Design. Lecture Notes in Mechanical Engineering. Springer, Singapore. 2019b: 259–268.
go back to reference Zhou, S., Zhu, X., Li, B., Gao, Q., Yan, B., Chen, G.: Experimental and numerical study on adiabatic laminar burning velocity and overall activation energy of biomass gasified gas. Fuel 320, 123976 (2022)CrossRef Zhou, S., Zhu, X., Li, B., Gao, Q., Yan, B., Chen, G.: Experimental and numerical study on adiabatic laminar burning velocity and overall activation energy of biomass gasified gas. Fuel 320, 123976 (2022)CrossRef
Metadata
Title
Three-Dimensional Numerical Simulations to Extend the Measurement Range of Laminar Burning Velocity of Heat Flux Burners
Author
Vinod Kumar Yadav
Publication date
02-02-2023
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3/2023
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-023-00398-2

Other articles of this Issue 3/2023

Flow, Turbulence and Combustion 3/2023 Go to the issue

Premium Partners