Skip to main content
Top
Published in: Flow, Turbulence and Combustion 1/2018

28-02-2018

Three-Dimensional Simulation of Turbulent Hot-Jet Ignition for Air-CH4-H2 Deflagration in a Confined Volume

Authors: M. E. Feyz, M. R. Nalim, Md N. Khan, A. Tarraf, K. Y. Paik

Published in: Flow, Turbulence and Combustion | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work describes essential aspects of the ignition and deflagration process initiated by the injection of a hot transient gas jet into a narrowly confined volume containing air-CH4-H2 mixture. Driven by the pressure difference between a prechamber and a long narrow constant-volume-combustion (CVC) chamber, the developing jet or puff involves complex processes of turbulent jet penetration and evolution of multi-scale vortices in the shear layer, jet tip, and adjacent confined spaces. The CVC chamber contains stoichiometric mixtures of air with gaseous fuel initially at atmospheric conditions. Fuel reactivity is varied using two different CH4/H2 blends. Jet momentum is varied using different pre-chamber pressures at jet initiation. The jet initiation and the subsequent ignition events generate pressure waves that interact with the mixing region and the propagating flame, depositing baroclinic vorticity. Transient three-dimensional flow simulations with detailed chemical kinetics are used to model CVC mixture ignition. Pre-ignition gas properties are then examined to develop and verify criteria to predict ignition delay time using lower-cost non-reacting flow simulations for this particular case of study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akbari, P., Nalim, R., Mueller, N.: A review of wave rotor technology and its applications. J. Eng. Gas Turbines Power 128(4), 717–735 (2006)CrossRef Akbari, P., Nalim, R., Mueller, N.: A review of wave rotor technology and its applications. J. Eng. Gas Turbines Power 128(4), 717–735 (2006)CrossRef
2.
go back to reference Oppenheim, A.K.: Combustion in Piston Engines: Technology, Evolution, Diagnosis and Control. Springer, Berlin (2004)CrossRef Oppenheim, A.K.: Combustion in Piston Engines: Technology, Evolution, Diagnosis and Control. Springer, Berlin (2004)CrossRef
3.
go back to reference Gussak, L.A., Karpov, V.P., Tikhonov, Y.V.: The application of Lag-process in prechamber engines. SAE Technical Paper No. 790692 (1979) Gussak, L.A., Karpov, V.P., Tikhonov, Y.V.: The application of Lag-process in prechamber engines. SAE Technical Paper No. 790692 (1979)
4.
go back to reference Wolanski, P., Gut, Z., Niedziela, W., Przastek, J., Siwiec, S.: Study of combustion dynamics in the research engine. SAE Technical Paper No. 972829 (1997) Wolanski, P., Gut, Z., Niedziela, W., Przastek, J., Siwiec, S.: Study of combustion dynamics in the research engine. SAE Technical Paper No. 972829 (1997)
5.
go back to reference Chinnathambi, P.: Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor. MS Thesis, Purdue University (2014) Chinnathambi, P.: Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor. MS Thesis, Purdue University (2014)
6.
go back to reference Fink, Z.J., Vanpee, M.: Overall kinetics of hot gas ignition. Combust. Sci. Technol. 11(5-6), 229–238 (1975)CrossRef Fink, Z.J., Vanpee, M.: Overall kinetics of hot gas ignition. Combust. Sci. Technol. 11(5-6), 229–238 (1975)CrossRef
7.
go back to reference Carpio, J., Iglesias, I., Vera, M., Sánchez, A.L., Liñán, A.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy 38(7), 3105–3109 (2013)CrossRef Carpio, J., Iglesias, I., Vera, M., Sánchez, A.L., Liñán, A.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy 38(7), 3105–3109 (2013)CrossRef
8.
go back to reference Gentz, G., Thelen, B., Gholamisheeri, M., Litke, P., Brown, A., Hoke, J., Toulson, E.: A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl. Therm. Eng. 81, 399–411 (2015)CrossRef Gentz, G., Thelen, B., Gholamisheeri, M., Litke, P., Brown, A., Hoke, J., Toulson, E.: A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine. Appl. Therm. Eng. 81, 399–411 (2015)CrossRef
9.
go back to reference Iglesias, I., Vera, M., Sánchez, A.L., Liñan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theor. Model. 16(6), 994–1010 (2012)CrossRef Iglesias, I., Vera, M., Sánchez, A.L., Liñan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theor. Model. 16(6), 994–1010 (2012)CrossRef
10.
go back to reference Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Numerical investigation of ignition in a transient turbulent jet by means of a PDF method. Combust. Sci. Technol. 186(10-11), 1582–1596 (2014)CrossRef Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Numerical investigation of ignition in a transient turbulent jet by means of a PDF method. Combust. Sci. Technol. 186(10-11), 1582–1596 (2014)CrossRef
11.
go back to reference Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: an investigation of ignition mechanisms by means of a PDF/REDIM method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)CrossRef Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: an investigation of ignition mechanisms by means of a PDF/REDIM method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)CrossRef
12.
go back to reference Sadanandan, R., Markus, D., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., Aldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef Sadanandan, R., Markus, D., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., Aldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef
14.
go back to reference Khan, M.N.: Three-Dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustor. MS Thesis, Purdue University (2015) Khan, M.N.: Three-Dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustor. MS Thesis, Purdue University (2015)
15.
go back to reference Paik, K.Y.: Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor. MS Thesis, Purdue University (2016) Paik, K.Y.: Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor. MS Thesis, Purdue University (2016)
16.
go back to reference Zhang, Y., Huang, Z., Wei, L., Zhang, J., Law, C.K.: Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame 159(3), 918–931 (2012)CrossRef Zhang, Y., Huang, Z., Wei, L., Zhang, J., Law, C.K.: Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures. Combust. Flame 159(3), 918–931 (2012)CrossRef
17.
go back to reference Goodwin, D.G.: An open-source, extensible software suite for CVD process simulation. Chemical Vapor Deposition XVI and EUROCVD 14(40), 2003–08 (2003) Goodwin, D.G.: An open-source, extensible software suite for CVD process simulation. Chemical Vapor Deposition XVI and EUROCVD 14(40), 2003–08 (2003)
18.
go back to reference Karimi, A., Chinnathambi, P., Rajagopal, M., Nalim, R.: Hotjet ignition of hydrocarbons and hydrogen in air: effect of jet chemical activity. In: Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2013) Karimi, A., Chinnathambi, P., Rajagopal, M., Nalim, R.: Hotjet ignition of hydrocarbons and hydrogen in air: effect of jet chemical activity. In: Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2013)
19.
go back to reference Nalim, M.R., Snyder, P.H., Kowalkowski, M.: Experimental test, model validation, and viability assessment of a wave-rotor constant-volume combustor. J. Propuls. Power 33, 163–175 (2016)CrossRef Nalim, M.R., Snyder, P.H., Kowalkowski, M.: Experimental test, model validation, and viability assessment of a wave-rotor constant-volume combustor. J. Propuls. Power 33, 163–175 (2016)CrossRef
20.
go back to reference Richards, K.J., Senecal, P.K., Pomraning, E.: CONVERGE (v2.2). Convergent Science, Inc., Madison (2016) Richards, K.J., Senecal, P.K., Pomraning, E.: CONVERGE (v2.2). Convergent Science, Inc., Madison (2016)
21.
go back to reference Song, L., Abraham, J.: Entrainment characteristics of transient turbulent round, radial and wall-impinging jets: theoretical deductions. J. Fluids Eng. 125(4), 605–612 (2003)CrossRef Song, L., Abraham, J.: Entrainment characteristics of transient turbulent round, radial and wall-impinging jets: theoretical deductions. J. Fluids Eng. 125(4), 605–612 (2003)CrossRef
24.
go back to reference Sung, C.J., Law, C.K., Chen, J.Y.: Further validation of an augmented reduced mechanism for methane oxidation: comparison of global parameters and detailed structure. Combust. Sci. Technol. 156(1), 201–220 (2000)CrossRef Sung, C.J., Law, C.K., Chen, J.Y.: Further validation of an augmented reduced mechanism for methane oxidation: comparison of global parameters and detailed structure. Combust. Sci. Technol. 156(1), 201–220 (2000)CrossRef
25.
go back to reference Mansourian, M., Kamali, R.: Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner. Acta Astronaut. 134, 133–140 (2017)CrossRef Mansourian, M., Kamali, R.: Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner. Acta Astronaut. 134, 133–140 (2017)CrossRef
26.
go back to reference Steinhilber, G., Bykov, V., Maas, U.: REDIM Reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst. 36(1), 655–661 (2017)CrossRef Steinhilber, G., Bykov, V., Maas, U.: REDIM Reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst. 36(1), 655–661 (2017)CrossRef
27.
go back to reference Gholamisheeri, M., Wichman, I.S., Toulson, E.: A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 183, 194–206 (2017)CrossRef Gholamisheeri, M., Wichman, I.S., Toulson, E.: A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 183, 194–206 (2017)CrossRef
28.
go back to reference Turns, S.R.: An introduction to combustion, vol. 287. McGraw-Hill, New York (1996) Turns, S.R.: An introduction to combustion, vol. 287. McGraw-Hill, New York (1996)
29.
go back to reference Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefMATH Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefMATH
30.
go back to reference Diez, F.J., Sangras, R., Kwon, O.C., Faeth, G.M.: Erratum: self-preserving properties of unsteady round nonbuoyant turbulent starting jets and puffs in still fluids [ASME J. Heat Transfer, 124, pp. 460–469 (2002)]. J. Heat Transf. 125(1), 204–205 (2003)CrossRef Diez, F.J., Sangras, R., Kwon, O.C., Faeth, G.M.: Erratum: self-preserving properties of unsteady round nonbuoyant turbulent starting jets and puffs in still fluids [ASME J. Heat Transfer, 124, pp. 460–469 (2002)]. J. Heat Transf. 125(1), 204–205 (2003)CrossRef
31.
go back to reference Mayinger, F., Jordan, M., Eder, A., Zaslonko, I.S., Karpov, V.P., Frolov, S.M.: Flame-jet ignition of fuel-air mixtures. Experimental findings and modeling. In: 17th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Heidelberg, pp 25–30 (1999) Mayinger, F., Jordan, M., Eder, A., Zaslonko, I.S., Karpov, V.P., Frolov, S.M.: Flame-jet ignition of fuel-air mixtures. Experimental findings and modeling. In: 17th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Heidelberg, pp 25–30 (1999)
32.
go back to reference Glassman, I., Yetter, R.A., Glumac, N.G.: Combustion. Academic Press, New York (2014) Glassman, I., Yetter, R.A., Glumac, N.G.: Combustion. Academic Press, New York (2014)
33.
go back to reference Brower, M., Petersen, E.L., Metcalfe, W., Curran, H.J., Füri, M., Bourque, G., Aluri, N., Güthe, F.: Ignition delay time and laminar flame speed calculations for natural gas/hydrogen blends at elevated pressures. J. Eng. Gas Turbines Power 135(2), 021504 (2013)CrossRef Brower, M., Petersen, E.L., Metcalfe, W., Curran, H.J., Füri, M., Bourque, G., Aluri, N., Güthe, F.: Ignition delay time and laminar flame speed calculations for natural gas/hydrogen blends at elevated pressures. J. Eng. Gas Turbines Power 135(2), 021504 (2013)CrossRef
Metadata
Title
Three-Dimensional Simulation of Turbulent Hot-Jet Ignition for Air-CH4-H2 Deflagration in a Confined Volume
Authors
M. E. Feyz
M. R. Nalim
Md N. Khan
A. Tarraf
K. Y. Paik
Publication date
28-02-2018
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 1/2018
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9893-7

Other articles of this Issue 1/2018

Flow, Turbulence and Combustion 1/2018 Go to the issue

Premium Partners