Skip to main content
Top
Published in: Pattern Analysis and Applications 1/2023

14-09-2022 | Theoretical Advances

Threshold prediction for detecting rare positive samples using a meta-learner

Authors: Hossein Ghaderi Zefrehi, Ghazaal Sheikhi, Hakan Altınçay

Published in: Pattern Analysis and Applications | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Threshold-moving is one of the several techniques employed in correcting the bias of binary classifiers towards the majority class. In this approach, the decision threshold is adjusted to detect the minority class at the cost of increased misclassification of the majority. In practice, selecting a good threshold using cross-validation on the training data is not feasible in some problems since there are only a few minority samples. In this study, building a meta-learner for threshold prediction to tackle the threshold estimation problem in the case of rare positive samples is addressed. Novel meta-features are suggested to quantify the imbalance characteristics of the data sets and the patterns among the prediction scores. A random forest-based threshold prediction model is constructed using these meta-features extracted from the score space of external data. The models obtained are then employed to estimate the optimal thresholds for previously unseen datasets. The random forest-based meta-learner that employs implicitly selected subset of the proposed meta-features and encodes information from multiple external sources in the form of different trees is evaluated by using 52 imbalanced datasets. In the first set of experiments, the best-fitting thresholds are computed for SVM and logistic regression classifiers that are trained using the original imbalanced training sets. The experiments are repeated by using ensembles of multiple learners, each trained using a different balanced data set. It is observed that the proposed approach provides better F-score when compared to alternative threshold-moving and balancing techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Jing X, Wu F, Dong X, Xu B (2017) An improved sda based defect prediction framework for both within-project and cross-project class-imbalance problems. IEEE Transactions on Software Engineering 43(4):321–339CrossRef Jing X, Wu F, Dong X, Xu B (2017) An improved sda based defect prediction framework for both within-project and cross-project class-imbalance problems. IEEE Transactions on Software Engineering 43(4):321–339CrossRef
3.
go back to reference Fdez-Glez J, Ruano-Ordás D, Fdez-Riverola F, Méndez JR, Pavón R, Laza R (2015) Analyzing the impact of unbalanced data on web spam classification. In: Omatu S, Malluhi QM, Gonzalez SR, Bocewicz G, Bucciarelli E, Giulioni G, Iqba F (eds) Distributed Computing and Artificial Intelligence, 12th International Conference. Springer International Publishing, Cham, pp 243–250CrossRef Fdez-Glez J, Ruano-Ordás D, Fdez-Riverola F, Méndez JR, Pavón R, Laza R (2015) Analyzing the impact of unbalanced data on web spam classification. In: Omatu S, Malluhi QM, Gonzalez SR, Bocewicz G, Bucciarelli E, Giulioni G, Iqba F (eds) Distributed Computing and Artificial Intelligence, 12th International Conference. Springer International Publishing, Cham, pp 243–250CrossRef
4.
go back to reference Padmaja TM, Dhulipalla N, Krishna PR, Bapi RS, Laha A (2007) An unbalanced data classification model using hybrid sampling technique for fraud detection. In: Ghosh A, De RK, Pal SK (eds) Pattern Recognition and Machine Intelligence. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 341–348CrossRef Padmaja TM, Dhulipalla N, Krishna PR, Bapi RS, Laha A (2007) An unbalanced data classification model using hybrid sampling technique for fraud detection. In: Ghosh A, De RK, Pal SK (eds) Pattern Recognition and Machine Intelligence. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 341–348CrossRef
5.
go back to reference Bahnsen C. A, Stojanovic A, Aouada D, Ottersten E. B (2014) Improving credit card fraud detection with calibrated probabilities, in: Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), pp. 677–685 Bahnsen C. A, Stojanovic A, Aouada D, Ottersten E. B (2014) Improving credit card fraud detection with calibrated probabilities, in: Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), pp. 677–685
6.
go back to reference Zhu B, Baesens B, S. K. vanden Broucke L. M (2017) An empirical comparison of techniques for the class imbalance problem in churn prediction, Information Sciences 408. 84–99 Zhu B, Baesens B, S. K. vanden Broucke L. M (2017) An empirical comparison of techniques for the class imbalance problem in churn prediction, Information Sciences 408. 84–99
7.
go back to reference Lee J, Park K (2021) GAN-based imbalanced data intrusion detection system. Personal and Ubiquitous Computing 25:121–128CrossRef Lee J, Park K (2021) GAN-based imbalanced data intrusion detection system. Personal and Ubiquitous Computing 25:121–128CrossRef
11.
go back to reference Tsoumakas G, Katakis I (2007) Multi-label classification: An overview. Int Journal of Data Warehousing and Mining 3(3):1–13CrossRef Tsoumakas G, Katakis I (2007) Multi-label classification: An overview. Int Journal of Data Warehousing and Mining 3(3):1–13CrossRef
14.
go back to reference López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences 250:113–141CrossRef López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences 250:113–141CrossRef
15.
go back to reference Díez-Pastor JF, Rodríguez JJ, García-Osorio CI, Kuncheva LI (2015) Random balance: Ensembles of variable priors classifiers for imbalanced data. Knowledge-Based Systems 85:96–111CrossRef Díez-Pastor JF, Rodríguez JJ, García-Osorio CI, Kuncheva LI (2015) Random balance: Ensembles of variable priors classifiers for imbalanced data. Knowledge-Based Systems 85:96–111CrossRef
22.
go back to reference Thai-Nghe N, Gantner Z, Schmidt-Thieme L (2010) Cost-sensitive learning methods for imbalanced data, in: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 Thai-Nghe N, Gantner Z, Schmidt-Thieme L (2010) Cost-sensitive learning methods for imbalanced data, in: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8
24.
go back to reference Díez-Pastor JF, Rodríguez JJ, García-Osorio CI, Kuncheva LI (2015) Diversity techniques improve the performance of the best imbalance learning ensembles. Information Sciences 325:98–117MathSciNetCrossRef Díez-Pastor JF, Rodríguez JJ, García-Osorio CI, Kuncheva LI (2015) Diversity techniques improve the performance of the best imbalance learning ensembles. Information Sciences 325:98–117MathSciNetCrossRef
26.
go back to reference Galar M, Fernandez A, Barrenechea E, Bustince H, Herrer F (2012) A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems Man and Cybernetics Part C 42(4):463–484CrossRef Galar M, Fernandez A, Barrenechea E, Bustince H, Herrer F (2012) A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems Man and Cybernetics Part C 42(4):463–484CrossRef
27.
go back to reference Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications 73:220–239CrossRef Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications 73:220–239CrossRef
28.
go back to reference Collell G, Prelec D, Patil KR (2018) A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data. Neurocomputing 275:330–340CrossRef Collell G, Prelec D, Patil KR (2018) A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data. Neurocomputing 275:330–340CrossRef
29.
go back to reference Pozzolo A. D, Caelen O, Johnson R. A, Bontempi G (2015) Calibrating probability with undersampling for unbalanced classification, in: IEEE Symposium Series on Computational Intelligence, SSCI2015, Cape Town, South Africa, pp. 159–166 Pozzolo A. D, Caelen O, Johnson R. A, Bontempi G (2015) Calibrating probability with undersampling for unbalanced classification, in: IEEE Symposium Series on Computational Intelligence, SSCI2015, Cape Town, South Africa, pp. 159–166
32.
go back to reference Buda M, Maki A, Mazurowski MA (2018) A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks 106:249–259CrossRef Buda M, Maki A, Mazurowski MA (2018) A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks 106:249–259CrossRef
33.
go back to reference Johnson J. M, Khoshgoftaar T. M (2019) Deep learning and thresholding with class-imbalanced big data, in: Proceedings of 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Johnson J. M, Khoshgoftaar T. M (2019) Deep learning and thresholding with class-imbalanced big data, in: Proceedings of 18th IEEE International Conference On Machine Learning And Applications (ICMLA),
34.
go back to reference Yang Y (2001) A study on thresholding strategies for text categorization, in: Proceedings of SIGIR-01, 24th ACM International Conference on Research and Development in Information Retrieval, ACM Press, pp. 137–145 Yang Y (2001) A study on thresholding strategies for text categorization, in: Proceedings of SIGIR-01, 24th ACM International Conference on Research and Development in Information Retrieval, ACM Press, pp. 137–145
35.
go back to reference Lipton ZC, Elkan C, Naryanaswamy B (2014) Optimal thresholding of classifiers to maximize F1 measure. In: Calders T, Esposito F, Hüllermeier E, Meo R (eds) Machine Learning and Knowledge Discovery in Databases. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 225–239CrossRef Lipton ZC, Elkan C, Naryanaswamy B (2014) Optimal thresholding of classifiers to maximize F1 measure. In: Calders T, Esposito F, Hüllermeier E, Meo R (eds) Machine Learning and Knowledge Discovery in Databases. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 225–239CrossRef
36.
go back to reference Chen JJ, Tsai CA, Moon H, Ahn H, Young JJ, Chen CH (2006) Decision threshold adjustment in class prediction. SAR and QSAR in Environmental Research 17(3):337–352CrossRef Chen JJ, Tsai CA, Moon H, Ahn H, Young JJ, Chen CH (2006) Decision threshold adjustment in class prediction. SAR and QSAR in Environmental Research 17(3):337–352CrossRef
38.
go back to reference Zhou Zhi-Hua, Liu Xu-Ying (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18(1):63–77MathSciNetCrossRef Zhou Zhi-Hua, Liu Xu-Ying (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18(1):63–77MathSciNetCrossRef
40.
go back to reference Tang L, Rajan S, Narayanan V. K (2009) Large scale multi-label classification via metalabeler, in: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, Association for Computing Machinery, New York, USA, p. 211–220. https://doi.org/10.1145/1526709.1526738 Tang L, Rajan S, Narayanan V. K (2009) Large scale multi-label classification via metalabeler, in: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, Association for Computing Machinery, New York, USA, p. 211–220. https://​doi.​org/​10.​1145/​1526709.​1526738
41.
42.
go back to reference Elisseeff A, Weston J (2001) A kernel method for multi-labelled classification, in: Proceedings of the 14th International Conference on Neural Information Processing Systems, NIPS’01, p. 681–687 Elisseeff A, Weston J (2001) A kernel method for multi-labelled classification, in: Proceedings of the 14th International Conference on Neural Information Processing Systems, NIPS’01, p. 681–687
43.
go back to reference Katz G, Shin ECR, Song D (2016) ExploreKit: Automatic feature generation and selection. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th International Conference on Data Mining, ICDM 2016, December 12–15. Spain, IEEE Computer Society, Barcelona, pp 979–984 Katz G, Shin ECR, Song D (2016) ExploreKit: Automatic feature generation and selection. In: Bonchi F, Domingo-Ferrer J, Baeza-Yates R, Zhou Z, Wu X (eds) IEEE 16th International Conference on Data Mining, ICDM 2016, December 12–15. Spain, IEEE Computer Society, Barcelona, pp 979–984
45.
go back to reference Chen C, Liaw A, Breiman L (2004) Using random forest to learn imbalanced data, Technical Report 666. Department of Statistics, UC Berkley Chen C, Liaw A, Breiman L (2004) Using random forest to learn imbalanced data, Technical Report 666. Department of Statistics, UC Berkley
46.
go back to reference Ling C. X, Li C (1998) Data mining for direct marketing: Problems and solutions, in: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD’98, AAAI Press, p. 73–79 Ling C. X, Li C (1998) Data mining for direct marketing: Problems and solutions, in: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD’98, AAAI Press, p. 73–79
47.
go back to reference Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–357CrossRefMATH Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–357CrossRefMATH
48.
go back to reference Haibo H, Bai Y, Garcia E. A, Li S (2008) ADASYN: Adaptive synthetic sampling approach for imbalanced learning, in: IEEE International Joint Conference on Neural Networks (IEEE WorId Congress on Computational Intelligence), pp. 1322–1328 Haibo H, Bai Y, Garcia E. A, Li S (2008) ADASYN: Adaptive synthetic sampling approach for imbalanced learning, in: IEEE International Joint Conference on Neural Networks (IEEE WorId Congress on Computational Intelligence), pp. 1322–1328
49.
go back to reference Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) DBSMOTE: Density-based synthetic minority over-sampling technique. Applied Intelligence 36(3):664–684CrossRef Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) DBSMOTE: Density-based synthetic minority over-sampling technique. Applied Intelligence 36(3):664–684CrossRef
50.
go back to reference Han H, Wang W-Y, Mao B-H (2005) Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In: Huang D-S, Zhang X-P, Huang G-B (eds) Advances in Intelligent Computing. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 878–887CrossRef Han H, Wang W-Y, Mao B-H (2005) Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In: Huang D-S, Zhang X-P, Huang G-B (eds) Advances in Intelligent Computing. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 878–887CrossRef
51.
go back to reference Barua S, Islam MM, Yao X, Murase K (2014) MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering 26(2):405–425CrossRef Barua S, Islam MM, Yao X, Murase K (2014) MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering 26(2):405–425CrossRef
52.
go back to reference Bellinger C, Sharma S, Japkowicz N, Zaïane OR (2020) Framework for extreme imbalance classification: SWIM-sampling with the majority class. Knowledge and Information Systems 62:841–866CrossRef Bellinger C, Sharma S, Japkowicz N, Zaïane OR (2020) Framework for extreme imbalance classification: SWIM-sampling with the majority class. Knowledge and Information Systems 62:841–866CrossRef
53.
go back to reference Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery 28:92–122MathSciNetCrossRefMATH Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery 28:92–122MathSciNetCrossRefMATH
54.
go back to reference Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17:255–287 Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17:255–287
Metadata
Title
Threshold prediction for detecting rare positive samples using a meta-learner
Authors
Hossein Ghaderi Zefrehi
Ghazaal Sheikhi
Hakan Altınçay
Publication date
14-09-2022
Publisher
Springer London
Published in
Pattern Analysis and Applications / Issue 1/2023
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-022-01103-1

Other articles of this Issue 1/2023

Pattern Analysis and Applications 1/2023 Go to the issue

Premium Partner