Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Time-Frequency Analysis

Author : Jose Maria Giron-Sierra

Published in: Digital Signal Processing with Matlab Examples, Volume 1

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is a logical continuation of the previous chapter on signal changes. The consideration of nonstationary signals requires an assortment of analysis tools, to highlight different aspects of importance. Many scientific and technical activities are interested on such, for medical purposes, for earthquake study, for machine maintenance, for astronomy, etc. The chapter introduces the short-time Fourier transform, the Gabor expansion, the continuous wavelet transform, the SAF and the Wigner distribution. The central sections consider in more general terms signal representation aspects, which lead to the Cohen’s class and the affine class of distributions. The final sections introduce the linear canonical transformation, with a number of particular cases like the fractional Fourier transform or the Fresnel transform, and some representation methods that adapt better for some classes of signals, like the chirplet transform, the reassignment method, the modified S-transform, the empirical mode decomposition, etc. The chapter ends with a set of illustrative examples, related to health, nature sounds, and Earthquakes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.K. Abbas, R. Bassam, Phonocardiography signal processing. Synth. Lect. Biomed. Eng. 4(1), 1–194 (2009)CrossRef A.K. Abbas, R. Bassam, Phonocardiography signal processing. Synth. Lect. Biomed. Eng. 4(1), 1–194 (2009)CrossRef
2.
go back to reference O. Adam, Segmentation of killer whale vocalizations using the Hilbert-Huang transform. EURASIP J. Adv. Signal Process. ID 245936, 1–10 (2008) O. Adam, Segmentation of killer whale vocalizations using the Hilbert-Huang transform. EURASIP J. Adv. Signal Process. ID 245936, 1–10 (2008)
3.
go back to reference L. Aguiar-Conraria, M.J. Soares, The continuous wavelet transform. Technical report, NIPE WP 16/2011 Universidade do Minho, Portugal (2011) L. Aguiar-Conraria, M.J. Soares, The continuous wavelet transform. Technical report, NIPE WP 16/2011 Universidade do Minho, Portugal (2011)
4.
go back to reference T. Alieva, V. Lopez, F. Agullo-Lopez, L.B. Almeida, The fractional Fourier transform in optical propagation problems. J. Modern Opt. 41(5), 1037–1044 (1994)CrossRef T. Alieva, V. Lopez, F. Agullo-Lopez, L.B. Almeida, The fractional Fourier transform in optical propagation problems. J. Modern Opt. 41(5), 1037–1044 (1994)CrossRef
5.
go back to reference O.A. Alkishriwo, The discrete linear chirp transform and its applications. Ph.D. thesis, University of Pittsburg (2006) O.A. Alkishriwo, The discrete linear chirp transform and its applications. Ph.D. thesis, University of Pittsburg (2006)
6.
go back to reference O.A. Alkishriwo, L.F. Chaparro, A. Akan, Signal separation in the Wigner distribution domain using fractional Fourier transform, in Proceedings of the 19th European Signal Processing Conference (2011), pp. 1879–1883 O.A. Alkishriwo, L.F. Chaparro, A. Akan, Signal separation in the Wigner distribution domain using fractional Fourier transform, in Proceedings of the 19th European Signal Processing Conference (2011), pp. 1879–1883
7.
go back to reference L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)CrossRef L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)CrossRef
8.
go back to reference R.A. Altes, Signal processing for target recognition in biosonar. Neural Netw. 8(7), 1275–1295 (1995)CrossRef R.A. Altes, Signal processing for target recognition in biosonar. Neural Netw. 8(7), 1275–1295 (1995)CrossRef
10.
go back to reference S. Assous, B. Boashash, Evaluation of the modified S-transform for time-frequency synchrony analysis and source localization. EURASIP J. Adv. Signal Process. 2012(49), 1–18 (2012) S. Assous, B. Boashash, Evaluation of the modified S-transform for time-frequency synchrony analysis and source localization. EURASIP J. Adv. Signal Process. 2012(49), 1–18 (2012)
12.
go back to reference F. Auger, P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)CrossRef F. Auger, P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)CrossRef
14.
go back to reference E. Azarov, A. Petrovsky, M. Parfieniuk, High-quality time stretch and pitch shift effects for speech and audio using the instantaneous harmonic analysis. EURASIP J. Adv. Signal Process. ID 712749, 1–10 (2010) E. Azarov, A. Petrovsky, M. Parfieniuk, High-quality time stretch and pitch shift effects for speech and audio using the instantaneous harmonic analysis. EURASIP J. Adv. Signal Process. ID 712749, 1–10 (2010)
15.
go back to reference O. Bar-Yosef, Y. Rotman, I. Nelken, Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neurosci. 22(19), 8619–8632 (2002) O. Bar-Yosef, Y. Rotman, I. Nelken, Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neurosci. 22(19), 8619–8632 (2002)
16.
go back to reference R.G. Baraniuk, D.L. Jones, Warped wavelet bases: unitary equivalence and signal processing. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 320–323 (1993) R.G. Baraniuk, D.L. Jones, Warped wavelet bases: unitary equivalence and signal processing. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 320–323 (1993)
17.
go back to reference R.G. Baraniuk, D.L. Jones, Unitary equivalence: a new twist on signal processing. IEEE Trans. Signal Process. 43(10), 2269–2282 (1995)CrossRef R.G. Baraniuk, D.L. Jones, Unitary equivalence: a new twist on signal processing. IEEE Trans. Signal Process. 43(10), 2269–2282 (1995)CrossRef
18.
go back to reference T. Bardainne, P. Gaillot, N. Dubos-Sallée, J. Blanco, G. Sénéchal, Characterization of seismic waveforms and classification of seismic events using chirplet atomic decomposition. Example from the Lacq gas field (Western Pyrenees, France). Geophys. J. Int. 166(2), 699–718 (2006)CrossRef T. Bardainne, P. Gaillot, N. Dubos-Sallée, J. Blanco, G. Sénéchal, Characterization of seismic waveforms and classification of seismic events using chirplet atomic decomposition. Example from the Lacq gas field (Western Pyrenees, France). Geophys. J. Int. 166(2), 699–718 (2006)CrossRef
19.
go back to reference M. Bartkowiak, Application of the fan-chirp transform to hybrid sinusoidal+noise modeling of polyphonic audio, in Proceedings of the European Signal Processing Conference (EUSIPCO) (2008), pp. 1–10 M. Bartkowiak, Application of the fan-chirp transform to hybrid sinusoidal+noise modeling of polyphonic audio, in Proceedings of the European Signal Processing Conference (EUSIPCO) (2008), pp. 1–10
20.
go back to reference J.J. Benedetto, C. Heil, D.F. Walnut, Gabor systems and the Balian-Low theorem, in Gabor Analysis and Algorithms (Birkhäuser, Boston, 1998), pp. 85–122 J.J. Benedetto, C. Heil, D.F. Walnut, Gabor systems and the Balian-Low theorem, in Gabor Analysis and Algorithms (Birkhäuser, Boston, 1998), pp. 85–122
22.
go back to reference M. Bertha, J.C. Golinval, Experimental modal analysis of a beam travelled by a moving mass using Hilbert vibration decomposition, in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN (2014), pp. 2789–2795 M. Bertha, J.C. Golinval, Experimental modal analysis of a beam travelled by a moving mass using Hilbert vibration decomposition, in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN (2014), pp. 2789–2795
23.
go back to reference J. Bertrand, P. Bertrand, J. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, ed. by A.D. Poularikas (CRC Press, Boca Raton, 2000) J. Bertrand, P. Bertrand, J. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, ed. by A.D. Poularikas (CRC Press, Boca Raton, 2000)
24.
go back to reference E. Biner, O. Akay, Digital computation of the fractional Mellin transform, in Proceedings of the 13th European Signal Processing Conference (EUSIPCO’05) (2005), pp. 1–4 E. Biner, O. Akay, Digital computation of the fractional Mellin transform, in Proceedings of the 13th European Signal Processing Conference (EUSIPCO’05) (2005), pp. 1–4
26.
go back to reference B. Boashash, Time Frequency Analysis (Elsevier, Amsterdam, 2003)MATH B. Boashash, Time Frequency Analysis (Elsevier, Amsterdam, 2003)MATH
27.
go back to reference H. Bolcskei, F. Hlawatsch, Discrete Zak transforms, polyphase transforms, and applications. IEEE Trans. Signal Process. 45(4), 851–866 (1997)CrossRef H. Bolcskei, F. Hlawatsch, Discrete Zak transforms, polyphase transforms, and applications. IEEE Trans. Signal Process. 45(4), 851–866 (1997)CrossRef
28.
go back to reference J.C. Brown, Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 89(1), 425–434 (1991)CrossRef J.C. Brown, Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 89(1), 425–434 (1991)CrossRef
29.
go back to reference J.C. Brown, P.J. Miller, Automatic classification of killer whale vocalizations using dynamic time warping. J. Acoust. Soc. Am. 122(2), 1201–1207 (2007)CrossRef J.C. Brown, P.J. Miller, Automatic classification of killer whale vocalizations using dynamic time warping. J. Acoust. Soc. Am. 122(2), 1201–1207 (2007)CrossRef
30.
go back to reference J.C. Brown, M.S. Puckette, An efficient algorithm for the calculation of a constant Q transform. J. Acoust. Soc. Am. 92(5), 2698–2701 (1992)CrossRef J.C. Brown, M.S. Puckette, An efficient algorithm for the calculation of a constant Q transform. J. Acoust. Soc. Am. 92(5), 2698–2701 (1992)CrossRef
32.
go back to reference A. Bultheel, A two-phase implementation of the fractional Fourier transform. Technical report, TW 588, Department of Computer Science, K.U. Leuven (2011) A. Bultheel, A two-phase implementation of the fractional Fourier transform. Technical report, TW 588, Department of Computer Science, K.U. Leuven (2011)
33.
go back to reference A. Bultheel, H. Martínez-Sulbaran, A shattered survey of the fractional Fourier transform. Technical report, TW 337, Department of Computer Science, K.U. Leuven (2002) A. Bultheel, H. Martínez-Sulbaran, A shattered survey of the fractional Fourier transform. Technical report, TW 337, Department of Computer Science, K.U. Leuven (2002)
34.
go back to reference A. Bultheel, H. Martínez-Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)MathSciNetMATHCrossRef A. Bultheel, H. Martínez-Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)MathSciNetMATHCrossRef
35.
go back to reference A. Bultheel, H. Martínez-Sulbaran, Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc.-Simon Stevin 13(5), 971–1005 (2007)MathSciNetMATH A. Bultheel, H. Martínez-Sulbaran, Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bull. Belg. Math. Soc.-Simon Stevin 13(5), 971–1005 (2007)MathSciNetMATH
36.
go back to reference R.G. Campos, J. Figueroa, A fast algorithm for the linear canonical transform. Signal Process. 91(6), 1444–1447 (2011)MATHCrossRef R.G. Campos, J. Figueroa, A fast algorithm for the linear canonical transform. Signal Process. 91(6), 1444–1447 (2011)MATHCrossRef
37.
go back to reference P. Cancela, E. López, M. Rocamora, Fan chirp transform for music representation, in Proceedings of the 13th International Conference on Digital Audio Effects DAFx10, Graz, Austria (2010), pp. 1–8 P. Cancela, E. López, M. Rocamora, Fan chirp transform for music representation, in Proceedings of the 13th International Conference on Digital Audio Effects DAFx10, Graz, Austria (2010), pp. 1–8
38.
go back to reference C. Capus, Y. Rzhanov, L. Linnett, The analysis of multiple linear chirp signals, in Proceedings of the IEE Seminar on Time-Scale and Time-Frequency Analysis and Applications (2000), pp. 4/1–4/7 C. Capus, Y. Rzhanov, L. Linnett, The analysis of multiple linear chirp signals, in Proceedings of the IEE Seminar on Time-Scale and Time-Frequency Analysis and Applications (2000), pp. 4/1–4/7
39.
go back to reference L. Cohen, Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)CrossRef L. Cohen, Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)CrossRef
40.
41.
go back to reference L. Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995) L. Cohen, Time-Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)
42.
go back to reference D.M. Cowell, S. Freear, Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2324–2333 (2010)CrossRef D.M. Cowell, S. Freear, Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2324–2333 (2010)CrossRef
43.
go back to reference P.K. Dash, K.B. Panigrahi, G. Panda, Power quality analysis using S-transform. IEEE Trans. Power Deliv. 18(2), 406–411 (2003)CrossRef P.K. Dash, K.B. Panigrahi, G. Panda, Power quality analysis using S-transform. IEEE Trans. Power Deliv. 18(2), 406–411 (2003)CrossRef
45.
go back to reference A. De Sena, D. Rocchesso, A fast Mellin transform with applications in DAFX, in Proceedings of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004), pp. 65–69 A. De Sena, D. Rocchesso, A fast Mellin transform with applications in DAFX, in Proceedings of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004), pp. 65–69
46.
go back to reference A. De Sena, D. Rocchesso, A study on using the Mellin transform for vowel recognition, in Proceedings of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004), pp. 5–8 A. De Sena, D. Rocchesso, A study on using the Mellin transform for vowel recognition, in Proceedings of the 7th International Conference on Digital Audio Effects (DAFx’04) (2004), pp. 5–8
47.
go back to reference A. De Sena, D. Rocchesso, A fast Mellin and scale transform. EURASIP J. Adv. Signal Process. ID 89170, 1–9 (2007) A. De Sena, D. Rocchesso, A fast Mellin and scale transform. EURASIP J. Adv. Signal Process. ID 89170, 1–9 (2007)
48.
go back to reference W.J. DeMeo, Characterizing musical signals with Wigner-Ville interferences. Proc. ICMC 2, 1–8 (2002) W.J. DeMeo, Characterizing musical signals with Wigner-Ville interferences. Proc. ICMC 2, 1–8 (2002)
49.
go back to reference R. Ditommaso, M. Mucciarelli, F.C. Ponzo, S-transform based filter applied to the analysis of non-linear dynamic behaviour of soil and buildings, in Proceedings of the 14th European Conference on Earthquake Engineering, vol. 30 (2010), pp. 1–8 R. Ditommaso, M. Mucciarelli, F.C. Ponzo, S-transform based filter applied to the analysis of non-linear dynamic behaviour of soil and buildings, in Proceedings of the 14th European Conference on Earthquake Engineering, vol. 30 (2010), pp. 1–8
50.
51.
go back to reference R. Dunn, T.F. Quatieri, Sinewave analysis/synthesis based on the fan-chirp transform, in Proceedings of the IEEE Workshp. Applications of Signal Processing to Audio and Acoustics (2009), pp. 247–250 R. Dunn, T.F. Quatieri, Sinewave analysis/synthesis based on the fan-chirp transform, in Proceedings of the IEEE Workshp. Applications of Signal Processing to Audio and Acoustics (2009), pp. 247–250
52.
go back to reference I.J.H. Ender, Introduction to Radar Part I. Ruhr-Universität Bochum (2011). Available on Internet I.J.H. Ender, Introduction to Radar Part I. Ruhr-Universität Bochum (2011). Available on Internet
53.
go back to reference T.H. Falk, E. Sejdic, T. Chau, W.Y. Chan, Spectro-temporal analysis of auscultatory sounds, in New Developments in Biomedical Engineering, ed. by D. Campolo (INTECH, 2010) T.H. Falk, E. Sejdic, T. Chau, W.Y. Chan, Spectro-temporal analysis of auscultatory sounds, in New Developments in Biomedical Engineering, ed. by D. Campolo (INTECH, 2010)
54.
go back to reference J. Fan, P. Dong, Time-frequency analysis of earthquake record based on S-transform and its effect on structural seismic response, in Proceedings of the IEEE International Conference on Engineering Computation, ICEC’09 (2009), pp. 107–109 J. Fan, P. Dong, Time-frequency analysis of earthquake record based on S-transform and its effect on structural seismic response, in Proceedings of the IEEE International Conference on Engineering Computation, ICEC’09 (2009), pp. 107–109
55.
go back to reference D.C. Farden, L.L. Scharf, A unified framework for the Sussman, Moyal, and Janssen formulas. IEEE Signal Process. Mag. 23(3), 124–125 (2006)CrossRef D.C. Farden, L.L. Scharf, A unified framework for the Sussman, Moyal, and Janssen formulas. IEEE Signal Process. Mag. 23(3), 124–125 (2006)CrossRef
56.
go back to reference H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications (Birkhäuser, Boston, 1998)MATHCrossRef H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms: Theory and Applications (Birkhäuser, Boston, 1998)MATHCrossRef
57.
go back to reference M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295(3–5), 518–530 (2006)MATHCrossRef M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295(3–5), 518–530 (2006)MATHCrossRef
58.
go back to reference M. Feldman, Hilbert Transform Applications in Mechanical Vibration (Wiley, New York, 2011)CrossRef M. Feldman, Hilbert Transform Applications in Mechanical Vibration (Wiley, New York, 2011)CrossRef
59.
go back to reference M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802 (2011)CrossRef M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802 (2011)CrossRef
61.
go back to reference P. Flandrin, Ambiguity functions, in Time-Frequency Signal Analysis and Processing, ed. by B. Boashash (Elsevier, Amsterdam, 2003), pp. 160–167 P. Flandrin, Ambiguity functions, in Time-Frequency Signal Analysis and Processing, ed. by B. Boashash (Elsevier, Amsterdam, 2003), pp. 160–167
62.
go back to reference P. Flandrin, F. Auger, E. Chassande-Mottin, Time-frequency reassignment: from principles to algorithms. Appl. Time-Freq. Signal Process. 5, 179–203 (2003)MATH P. Flandrin, F. Auger, E. Chassande-Mottin, Time-frequency reassignment: from principles to algorithms. Appl. Time-Freq. Signal Process. 5, 179–203 (2003)MATH
63.
64.
go back to reference S.A. Fulop, K. Fitz, Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J. Acoust. Soc. Am. 119(1), 360–371 (2006)CrossRef S.A. Fulop, K. Fitz, Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J. Acoust. Soc. Am. 119(1), 360–371 (2006)CrossRef
65.
go back to reference S.A. Fulop, K. Fitz, Separation of components from impulses in reassigned spectrograms. J. Acoust. Soc. Am. 121(3), 1510–1518 (2007)CrossRef S.A. Fulop, K. Fitz, Separation of components from impulses in reassigned spectrograms. J. Acoust. Soc. Am. 121(3), 1510–1518 (2007)CrossRef
66.
go back to reference D. Gabor, Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng.-Part III: Radio Commun. Eng. 93(26), 429–441 (1946) D. Gabor, Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng.-Part III: Radio Commun. Eng. 93(26), 429–441 (1946)
67.
go back to reference R.X. Gao, R. Yan, From Fourier transform to wavelet transform: a historical perspective, in Wavelets: Theory and Applications (Springer, New York, 2011), pp. 17–32 R.X. Gao, R. Yan, From Fourier transform to wavelet transform: a historical perspective, in Wavelets: Theory and Applications (Springer, New York, 2011), pp. 17–32
68.
go back to reference P.K. Ghosh, T.V. Sreenivas, Time-varying filter interpretation of Fourier transform and its variants. Signal Process. 86(11), 3258–3263 (2006)MATHCrossRef P.K. Ghosh, T.V. Sreenivas, Time-varying filter interpretation of Fourier transform and its variants. Signal Process. 86(11), 3258–3263 (2006)MATHCrossRef
70.
go back to reference C. Golé, Symplectic Twist Maps: Global Variational Techniques, vol. 18 (World Scientific, Singapore, 2001)MATH C. Golé, Symplectic Twist Maps: Global Variational Techniques, vol. 18 (World Scientific, Singapore, 2001)MATH
71.
go back to reference O. González-Gaxiola, J.A. Santiago, An \(\alpha \)-Mellin transform and some of its applications. Int. J. Contemp. Math. Sci. 7(45–48), 2353–2361 (2012)MathSciNetMATH O. González-Gaxiola, J.A. Santiago, An \(\alpha \)-Mellin transform and some of its applications. Int. J. Contemp. Math. Sci. 7(45–48), 2353–2361 (2012)MathSciNetMATH
72.
go back to reference R. Gribonval, Fast matching pursuit with a multiscale dictionary of Gaussian chirps. IEEE Trans. Signal Process. 49(5), 994–1001 (2001)MathSciNetCrossRef R. Gribonval, Fast matching pursuit with a multiscale dictionary of Gaussian chirps. IEEE Trans. Signal Process. 49(5), 994–1001 (2001)MathSciNetCrossRef
73.
74.
go back to reference T. Gudra, K. Herman, Some problems of analyzing bio-sonar echolocation signals generated by echolocating animals living in the water and in the air. J. Acoust. Soc. Am. 123(5), 3778–3778 (2008)CrossRef T. Gudra, K. Herman, Some problems of analyzing bio-sonar echolocation signals generated by echolocating animals living in the water and in the air. J. Acoust. Soc. Am. 123(5), 3778–3778 (2008)CrossRef
75.
go back to reference J.B. Harley, Y. Ying, J.M. Moura, I.J. Oppenheim, L. Sobelman, J.H. Garrett, D.E. Chimenti, Application of Mellin transform features for robust ultrasonic guided wave structural health monitoring. Proc. AIP Conf.-Am. Inst. Phys. 1, 1551–1559 (2012)CrossRef J.B. Harley, Y. Ying, J.M. Moura, I.J. Oppenheim, L. Sobelman, J.H. Garrett, D.E. Chimenti, Application of Mellin transform features for robust ultrasonic guided wave structural health monitoring. Proc. AIP Conf.-Am. Inst. Phys. 1, 1551–1559 (2012)CrossRef
76.
go back to reference S. Harput, Use of chirps in medical ultrasound images. Ph.D. thesis, University of Leeds (2012) S. Harput, Use of chirps in medical ultrasound images. Ph.D. thesis, University of Leeds (2012)
78.
go back to reference J.J. Healy, J.T. Sheridan, Analytical and numerical analysis of ABCD systems. Proc. SPIE 6994, 402–1 (2008) (pp. 402 1–8) J.J. Healy, J.T. Sheridan, Analytical and numerical analysis of ABCD systems. Proc. SPIE 6994, 402–1 (2008) (pp. 402 1–8)
80.
go back to reference B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)MathSciNetCrossRef B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)MathSciNetCrossRef
81.
go back to reference F. Hlawatsch, H. Bölcskei, Unified theory of displacement-covariant time-frequency analysis, in Proceedings of the IEEE-SP International Symposium on Time-Frequency Time-Scale Analysis (TFTS-94), Philadelphia (PA) (1994), pp. 524–527 F. Hlawatsch, H. Bölcskei, Unified theory of displacement-covariant time-frequency analysis, in Proceedings of the IEEE-SP International Symposium on Time-Frequency Time-Scale Analysis (TFTS-94), Philadelphia (PA) (1994), pp. 524–527
82.
go back to reference F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representation. IEEE Signal Process. Mag. 9(2), 21–67 (1992) F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representation. IEEE Signal Process. Mag. 9(2), 21–67 (1992)
83.
go back to reference F. Hlawatsch, T.G. Manickam, R.L. Urbanke, W. Jones, Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison. Signal Process. 43(2), 149–168 (1995)MATHCrossRef F. Hlawatsch, T.G. Manickam, R.L. Urbanke, W. Jones, Smoothed pseudo-Wigner distribution, Choi-Williams distribution, and cone-kernel representation: ambiguity-domain analysis and experimental comparison. Signal Process. 43(2), 149–168 (1995)MATHCrossRef
84.
go back to reference N. Holighaus, M. Dorfler, G.A. Velasco, T. Grill, A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013) N. Holighaus, M. Dorfler, G.A. Velasco, T. Grill, A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process. 21(4), 775–785 (2013)
85.
go back to reference D.D. Holm, Notes on Linear Symplectic Transformations. Handout, Imperial College London (2012) (Available on Internet) D.D. Holm, Notes on Linear Symplectic Transformations. Handout, Imperial College London (2012) (Available on Internet)
87.
go back to reference C.C. Huang, S.F. Liang, M.S. Young, F.Z. Shaw, A novel application of the S-transform in removing powerline interference from biomedical signals. Physiol. Meas. 30(1), 13–27 (2009)CrossRef C.C. Huang, S.F. Liang, M.S. Young, F.Z. Shaw, A novel application of the S-transform in removing powerline interference from biomedical signals. Physiol. Meas. 30(1), 13–27 (2009)CrossRef
88.
go back to reference N.E. Huang, N.O. Attoh-Okine, The Hilbert-Huang Transform in Engineering (CRC Press, Boca Raton, 2005)MATHCrossRef N.E. Huang, N.O. Attoh-Okine, The Hilbert-Huang Transform in Engineering (CRC Press, Boca Raton, 2005)MATHCrossRef
89.
go back to reference N.E. Huang, Z. Wu, A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)CrossRef N.E. Huang, Z. Wu, A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)CrossRef
90.
go back to reference N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetMATHCrossRef N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetMATHCrossRef
91.
go back to reference J.J. Hwang, S.G. Cho, J. Moon, J.W. Lee, Nonuniform DFT based on nonequispaced sampling. WSEAS Trans. Inf. Sci. Appl. 2(9), 1403–1408 (2005) J.J. Hwang, S.G. Cho, J. Moon, J.W. Lee, Nonuniform DFT based on nonequispaced sampling. WSEAS Trans. Inf. Sci. Appl. 2(9), 1403–1408 (2005)
92.
go back to reference C. Ioana, A. Quinquis, Y. Stephan, Feature extraction from underwater signals using time-frequency warping operators. IEEE J. Ocean. Eng. 31(3), 628–645 (2006)CrossRef C. Ioana, A. Quinquis, Y. Stephan, Feature extraction from underwater signals using time-frequency warping operators. IEEE J. Ocean. Eng. 31(3), 628–645 (2006)CrossRef
93.
go back to reference R. Iwai, H. Yoshimura, High-accuracy and high-security individual authentication by the fingerprint template generated using the fractional Fourier transform, in Fourier Transforms – Approach to Scientific Principles, ed. by G. Nikolic (InTech Open, 2011) R. Iwai, H. Yoshimura, High-accuracy and high-security individual authentication by the fingerprint template generated using the fractional Fourier transform, in Fourier Transforms – Approach to Scientific Principles, ed. by G. Nikolic (InTech Open, 2011)
95.
go back to reference K.A. Jones, B. Porjesz, D. Chorlian, M. Rangaswamy, C. Kamarajan, A. Padmanabhapillai, H. Begleiter, S-transform time-frequency analysis of p300 reveals deficits in individuals diagnosed with alcoholism. Clin. Neurophysiol. 117(10), 2128–2143 (2006)CrossRef K.A. Jones, B. Porjesz, D. Chorlian, M. Rangaswamy, C. Kamarajan, A. Padmanabhapillai, H. Begleiter, S-transform time-frequency analysis of p300 reveals deficits in individuals diagnosed with alcoholism. Clin. Neurophysiol. 117(10), 2128–2143 (2006)CrossRef
96.
go back to reference M. Képesi, L. Weruaga, Adaptive chirp-based time-frequency analysis of speech signals. Speech Commun. 48, 474–492 (2006)CrossRef M. Képesi, L. Weruaga, Adaptive chirp-based time-frequency analysis of speech signals. Speech Commun. 48, 474–492 (2006)CrossRef
98.
go back to reference Y. Kopsinis, E. Aboutanios, D.A. Waters, S. McLaughlin, Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls. J. Acoust. Soc. Am. 127(2), 1124–1134 (2010)CrossRef Y. Kopsinis, E. Aboutanios, D.A. Waters, S. McLaughlin, Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls. J. Acoust. Soc. Am. 127(2), 1124–1134 (2010)CrossRef
99.
go back to reference J. Kovacevic, A. Chebira, Life beyond bases: the advent of frames. IEEE Signal Process. Mag. 24, 86–104 (2007)CrossRef J. Kovacevic, A. Chebira, Life beyond bases: the advent of frames. IEEE Signal Process. Mag. 24, 86–104 (2007)CrossRef
100.
101.
go back to reference M.A. Kutay, H.M. Ozaktas, O. Ankan, L. Onural, Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)CrossRef M.A. Kutay, H.M. Ozaktas, O. Ankan, L. Onural, Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)CrossRef
102.
go back to reference M.O. Lammers, W.W. Au, D.L. Herzing, The broadband social acoustic signaling behavior of spinner and spotted dolphins. J. Acoust. Soc. Am. 114(3), 1629–1639 (2003)CrossRef M.O. Lammers, W.W. Au, D.L. Herzing, The broadband social acoustic signaling behavior of spinner and spotted dolphins. J. Acoust. Soc. Am. 114(3), 1629–1639 (2003)CrossRef
103.
go back to reference K.G. Larkin, A beginner’s guide to the fractional Fourier transform, part 1. Aust. Opt. Soc. News 9(2), 18–21 (1995) K.G. Larkin, A beginner’s guide to the fractional Fourier transform, part 1. Aust. Opt. Soc. News 9(2), 18–21 (1995)
104.
go back to reference L. Lee, R. Rose, A frequency warping approach to speaker normalization. IEEE Trans. Speech Audio Process. 6(1), 49–60 (1998)CrossRef L. Lee, R. Rose, A frequency warping approach to speaker normalization. IEEE Trans. Speech Audio Process. 6(1), 49–60 (1998)CrossRef
105.
go back to reference C.F. Lin, J.D. Zhu, Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 0954411911434246 (2012) C.F. Lin, J.D. Zhu, Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 0954411911434246 (2012)
106.
go back to reference G. Livanos, N. Ranganathan, J. Jiang, Heart sound analysis using the S-transform. Proceedings IEEE Comput. Cardiol. 27, 587–590 (2000) G. Livanos, N. Ranganathan, J. Jiang, Heart sound analysis using the S-transform. Proceedings IEEE Comput. Cardiol. 27, 587–590 (2000)
107.
go back to reference J. Locke, P.R. White, The performance of methods based on the fractional Fourier transform for detecting marine mammal vocalizations. J. Acoust. Soc. Am. 130(4), 1974–1984 (2011)CrossRef J. Locke, P.R. White, The performance of methods based on the fractional Fourier transform for detecting marine mammal vocalizations. J. Acoust. Soc. Am. 130(4), 1974–1984 (2011)CrossRef
108.
go back to reference A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993) A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993)
109.
go back to reference K. Lord, M. Feinstein, R. Coppinger, Barking and mobbing. Behav. Process. 81(3), 358–368 (2009)CrossRef K. Lord, M. Feinstein, R. Coppinger, Barking and mobbing. Behav. Process. 81(3), 358–368 (2009)CrossRef
110.
go back to reference Y. Lu, A. Kasaeifard, E. Oruklu, J. Saniie, Fractional Fourier transform for ultrasonic chirplet signal decomposition. Adv. Acoust. Vib. 2012, 1–13 (2012)CrossRef Y. Lu, A. Kasaeifard, E. Oruklu, J. Saniie, Fractional Fourier transform for ultrasonic chirplet signal decomposition. Adv. Acoust. Vib. 2012, 1–13 (2012)CrossRef
111.
go back to reference I. Magrin-Chagnolleau, R.G. Baraniuk, Empirical mode decomposition based frequency attributes, in Proceedings of the 69th SEG Meeting (1999), pp. 1949–1952 I. Magrin-Chagnolleau, R.G. Baraniuk, Empirical mode decomposition based frequency attributes, in Proceedings of the 69th SEG Meeting (1999), pp. 1949–1952
112.
go back to reference B.R. Mahafza, Radar System Analysis and Design Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2005)MATH B.R. Mahafza, Radar System Analysis and Design Using MATLAB (Chapman & Hall/CRC, Boca Raton, 2005)MATH
113.
go back to reference S.G. Mallat, Z. Zhang, Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)MATHCrossRef S.G. Mallat, Z. Zhang, Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)MATHCrossRef
114.
go back to reference S. Mann, S. Haykin, The chirplet transform: a generalization of Gabor’s logon transform. Vis. Interface 91, 205–212 (1991) S. Mann, S. Haykin, The chirplet transform: a generalization of Gabor’s logon transform. Vis. Interface 91, 205–212 (1991)
115.
go back to reference S. Mann, S. Haykin, Adaptive chirplet transform: an adaptive generalization of the wavelet transform. Opt. Eng. 31(6), 1243–1256 (1992)CrossRef S. Mann, S. Haykin, Adaptive chirplet transform: an adaptive generalization of the wavelet transform. Opt. Eng. 31(6), 1243–1256 (1992)CrossRef
116.
go back to reference S. Mann, S. Haykin, Time-frequency perspectives: the “chirplet” transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 417–420 (1992) S. Mann, S. Haykin, Time-frequency perspectives: the “chirplet” transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 417–420 (1992)
117.
go back to reference L. Masinha, R.G. Stockwell, R.P. Lowe, Pattern analysis with two-dimensional spectral localization: applications of two-dimensional S-transforms. Phys. A 239, 286–295 (1997)CrossRef L. Masinha, R.G. Stockwell, R.P. Lowe, Pattern analysis with two-dimensional spectral localization: applications of two-dimensional S-transforms. Phys. A 239, 286–295 (1997)CrossRef
118.
go back to reference P.D. McFadden, J.G. Cook, L.M. Forster, Decomposition of gear vibration signals by the generalised S-transform. Mech. Syst. Signal Process. 13(5), 691–707 (1999)CrossRef P.D. McFadden, J.G. Cook, L.M. Forster, Decomposition of gear vibration signals by the generalised S-transform. Mech. Syst. Signal Process. 13(5), 691–707 (1999)CrossRef
119.
go back to reference D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A 10, 1875–1881 (1993) D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A 10, 1875–1881 (1993)
120.
go back to reference A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications (Wiley, New York, 1999)MATHCrossRef A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications (Wiley, New York, 1999)MATHCrossRef
121.
122.
go back to reference B.R. Mitchell, M.M. Makagon, M.M. Jaeger, R.H. Barrett, Information content of coyote barks and howls. Bioacoustics 15(3), 289–314 (2006)CrossRef B.R. Mitchell, M.M. Makagon, M.M. Jaeger, R.H. Barrett, Information content of coyote barks and howls. Bioacoustics 15(3), 289–314 (2006)CrossRef
123.
go back to reference E.S. Morton, Animal communication: What do animals say? Am. Biol. Teach. 45(6), 343–348 (1983)CrossRef E.S. Morton, Animal communication: What do animals say? Am. Biol. Teach. 45(6), 343–348 (1983)CrossRef
124.
go back to reference A. Naït-Ali (ed.), Advanced Biosignal Processing (Springer, New York, 2009) A. Naït-Ali (ed.), Advanced Biosignal Processing (Springer, New York, 2009)
125.
go back to reference L. Neal, F. Briggs, R. Raich, X.Z. Fern, Time-frequency segmentation of bird song in noisy acoustic environments, in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP) (2011), pp. 2012–2015 L. Neal, F. Briggs, R. Raich, X.Z. Fern, Time-frequency segmentation of bird song in noisy acoustic environments, in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP) (2011), pp. 2012–2015
126.
go back to reference Y. Nikolova, \(\alpha \)-Mellin transform and one of its applications. Math. Balk. 26(1–2), 185–190 (2012)MathSciNetMATH Y. Nikolova, \(\alpha \)-Mellin transform and one of its applications. Math. Balk. 26(1–2), 185–190 (2012)MathSciNetMATH
127.
go back to reference G.K. Nilsen, Recursive time-frequency reassignment. Master’s thesis, University of Bergen (2007) G.K. Nilsen, Recursive time-frequency reassignment. Master’s thesis, University of Bergen (2007)
128.
go back to reference J.C. O’Neill, P. Flandrin, Virtues and vices of quartic time-frequency distributions. IEEE Trans. Signal Process. 48(9), 2641–2650 (2000)CrossRef J.C. O’Neill, P. Flandrin, Virtues and vices of quartic time-frequency distributions. IEEE Trans. Signal Process. 48(9), 2641–2650 (2000)CrossRef
129.
go back to reference J.P. Ovarlez, J. Bertrand, P. Bertrand, Computation of affine time-frequency distributions using the fast Mellin transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 117–120 (1992) J.P. Ovarlez, J. Bertrand, P. Bertrand, Computation of affine time-frequency distributions using the fast Mellin transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 117–120 (1992)
130.
go back to reference H.M. Ozaktas, D. Mendlovic, Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993)CrossRef H.M. Ozaktas, D. Mendlovic, Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993)CrossRef
131.
go back to reference H.M. Ozaktas, M.A. Kutay, G. Bozdag, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44, 2141–2150 (1996)CrossRef H.M. Ozaktas, M.A. Kutay, G. Bozdag, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44, 2141–2150 (1996)CrossRef
132.
go back to reference H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform (Wiley, New York, 2001) H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform (Wiley, New York, 2001)
133.
go back to reference R. Palaniappan, K. Sundaraj, N.U. Ahamed, A. Arjunan, S. Sundaraj, Computer-based respiratory sound analysis: a systematic review. IETE Tech. Rev. 30(3), 248–256 (2013)CrossRef R. Palaniappan, K. Sundaraj, N.U. Ahamed, A. Arjunan, S. Sundaraj, Computer-based respiratory sound analysis: a systematic review. IETE Tech. Rev. 30(3), 248–256 (2013)CrossRef
134.
go back to reference K. Paliwal, B. Shannon, J. Lyons, K. Wójcicki, Speech-signal-based frequency warping. IEEE Signal Process. Lett. 16(4), 319–322 (2009)CrossRef K. Paliwal, B. Shannon, J. Lyons, K. Wójcicki, Speech-signal-based frequency warping. IEEE Signal Process. Lett. 16(4), 319–322 (2009)CrossRef
135.
go back to reference A. Papandreou, F. Hlawatsch, G.F. Boudreaux-Bartels, The hyperbolic class of quadratic time-frequency representations. I. Constant-Q warping, the hyperbolic paradigm, properties, and members. IEEE Trans. Signal Process. 41(12), 3425–3444 (1993)MATHCrossRef A. Papandreou, F. Hlawatsch, G.F. Boudreaux-Bartels, The hyperbolic class of quadratic time-frequency representations. I. Constant-Q warping, the hyperbolic paradigm, properties, and members. IEEE Trans. Signal Process. 41(12), 3425–3444 (1993)MATHCrossRef
136.
go back to reference S. Parolai, Denoising of seismograms using the S-transform. Bull. Seismol. Soc. Am. 99(1), 226–234 (2009)CrossRef S. Parolai, Denoising of seismograms using the S-transform. Bull. Seismol. Soc. Am. 99(1), 226–234 (2009)CrossRef
138.
go back to reference C.R. Pinnegar, Polarization analysis and polarization filtering of three-component signals with the time-frequency S-transform. Geophys. J. Int. 165(2), 596–606 (2006)CrossRef C.R. Pinnegar, Polarization analysis and polarization filtering of three-component signals with the time-frequency S-transform. Geophys. J. Int. 165(2), 596–606 (2006)CrossRef
139.
go back to reference C.R. Pinnegar, L. Mansinha, The S-transform with windows of arbitrary and varying shape. Geophysics 68(1), 381–385 (2003)MATHCrossRef C.R. Pinnegar, L. Mansinha, The S-transform with windows of arbitrary and varying shape. Geophysics 68(1), 381–385 (2003)MATHCrossRef
140.
go back to reference J. Placer, C.N. Slobodchikoff, J. Burns, J. Placer, R. Middleton, Using self-organizing maps to recognize acoustic units associated with information content in animal vocalizations. J. Acoust. Soc. Am. 119(5), 3140–3146 (2006)CrossRef J. Placer, C.N. Slobodchikoff, J. Burns, J. Placer, R. Middleton, Using self-organizing maps to recognize acoustic units associated with information content in animal vocalizations. J. Acoust. Soc. Am. 119(5), 3140–3146 (2006)CrossRef
142.
go back to reference M.T. Pourazad, Z. Moussavi, G. Thomas, Heart sound cancellation from lung sound recordings using time-frequency filtering. Med. Biol. Eng. Comput. 44(3), 216–225 (2006)CrossRef M.T. Pourazad, Z. Moussavi, G. Thomas, Heart sound cancellation from lung sound recordings using time-frequency filtering. Med. Biol. Eng. Comput. 44(3), 216–225 (2006)CrossRef
143.
go back to reference J. Prestin, E. Quak, H. Rauhut, K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)MathSciNetMATHCrossRef J. Prestin, E. Quak, H. Rauhut, K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)MathSciNetMATHCrossRef
144.
go back to reference S. Qian, Introduction to Time-Frequency and Wavelet Transforms (Prentice Hall, Upper Saddle River, 2002) S. Qian, Introduction to Time-Frequency and Wavelet Transforms (Prentice Hall, Upper Saddle River, 2002)
145.
go back to reference S. Qian, D. Chen, Joint time-frequency analysis. IEEE Signal Process. Mag. 16(2), 52–67 (1999)CrossRef S. Qian, D. Chen, Joint time-frequency analysis. IEEE Signal Process. Mag. 16(2), 52–67 (1999)CrossRef
146.
go back to reference A.R. Rao, E. Hsu, Hilbert-Huang Transform Analysis of Hydrological and Environmental Time Series (Springer, New York, 2008)MATH A.R. Rao, E. Hsu, Hilbert-Huang Transform Analysis of Hydrological and Environmental Time Series (Springer, New York, 2008)MATH
147.
go back to reference S. Reichert, R. Gass, C. Brandt, E. Andrès, Analysis of respiratory sounds: state of the art. Clin. Med. Circ. Respir. Pulm. Med. 2, 45–58 (2008) S. Reichert, R. Gass, C. Brandt, E. Andrès, Analysis of respiratory sounds: state of the art. Clin. Med. Circ. Respir. Pulm. Med. 2, 45–58 (2008)
148.
go back to reference G. Rilling, P. Flandrin, P. Goncalves, On empirical mode decomposition and its algorithms, in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3 (2003), pp. 8–11 G. Rilling, P. Flandrin, P. Goncalves, On empirical mode decomposition and its algorithms, in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3 (2003), pp. 8–11
149.
go back to reference B. Ristic, B. Boashash, Scale domain analysis of a bat sonar signal, in Proceedings of the IEEE International Symposium on Time-Frequency and Time-Scale (1994), pp. 373–376 B. Ristic, B. Boashash, Scale domain analysis of a bat sonar signal, in Proceedings of the IEEE International Symposium on Time-Frequency and Time-Scale (1994), pp. 373–376
150.
go back to reference R.P. Rodrigues, P.M. Silveira, P.F. Ribeiro, A survey of techniques applied to non-stationary waveforms in electrical power systems, in Proceedings of the IEEE 14th International Conference on Harmonics and Quality of Power (2010), pp. 1–8 R.P. Rodrigues, P.M. Silveira, P.F. Ribeiro, A survey of techniques applied to non-stationary waveforms in electrical power systems, in Proceedings of the IEEE 14th International Conference on Harmonics and Quality of Power (2010), pp. 1–8
151.
go back to reference Z.E. Ross, Y. Ben-Zion, Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int. 199(1), 368–381 (2014)CrossRef Z.E. Ross, Y. Ben-Zion, Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys. J. Int. 199(1), 368–381 (2014)CrossRef
152.
153.
go back to reference N. Saulig, V. Sucic, B. Boashash, An automatic time-frequency procedure for interference suppression by exploiting their geometrical features, in Proceedings of the 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA) (2011), pp. 311–314 N. Saulig, V. Sucic, B. Boashash, An automatic time-frequency procedure for interference suppression by exploiting their geometrical features, in Proceedings of the 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA) (2011), pp. 311–314
154.
go back to reference A.M. Sayeed, D.L. Jones, On the equivalence of generalized joint signal representations, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95, vol. 3 (1995), pp. 1533–1536 A.M. Sayeed, D.L. Jones, On the equivalence of generalized joint signal representations, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95, vol. 3 (1995), pp. 1533–1536
156.
go back to reference C. Schörkhuber, A. Klapuri, Constant-Q transform toolbox for music processing, in Proceedings of the 7th Sound and Music Computing Conference, Barcelona, Spain (2010), pp. 3–6 C. Schörkhuber, A. Klapuri, Constant-Q transform toolbox for music processing, in Proceedings of the 7th Sound and Music Computing Conference, Barcelona, Spain (2010), pp. 3–6
157.
go back to reference E. Sejdiæ, I. Djuroviæ, J. Jiang, Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009)CrossRef E. Sejdiæ, I. Djuroviæ, J. Jiang, Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009)CrossRef
158.
go back to reference E. Sejdiæ, I. Djuroviæ, L. Stankovi, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)CrossRef E. Sejdiæ, I. Djuroviæ, L. Stankovi, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)CrossRef
159.
go back to reference P.D. Spanos, A. Giaralis, N.P. Politis, Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition. Soil Dyn. Earthq. Eng. 27(7), 675–689 (2007)CrossRef P.D. Spanos, A. Giaralis, N.P. Politis, Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition. Soil Dyn. Earthq. Eng. 27(7), 675–689 (2007)CrossRef
161.
go back to reference C. Stamoulis, B.S. Chang, Estimation of directional brain anisotropy from EEG signals using the Mellin transform and implications for source localization, in Proceedings of the IEEE International Conference on Digital Signal Processing (DSP) (2011), pp. 1–6 C. Stamoulis, B.S. Chang, Estimation of directional brain anisotropy from EEG signals using the Mellin transform and implications for source localization, in Proceedings of the IEEE International Conference on Digital Signal Processing (DSP) (2011), pp. 1–6
162.
go back to reference R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the S-transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)CrossRef R.G. Stockwell, L. Mansinha, R.P. Lowe, Localization of the complex spectrum: the S-transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)CrossRef
163.
go back to reference Z. Syed, D. Leeds, D. Curtis, F. Nesta, R.A. Levine, J. Guttag, A framework for the analysis of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)CrossRef Z. Syed, D. Leeds, D. Curtis, F. Nesta, R.A. Levine, J. Guttag, A framework for the analysis of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)CrossRef
165.
go back to reference S. Umesh, L. Cohen, N. Marinovic, D.J. Nelson, Scale transform in speech analysis. IEEE Trans. Speech Audio Process. 7(1), 40–45 (1999)CrossRef S. Umesh, L. Cohen, N. Marinovic, D.J. Nelson, Scale transform in speech analysis. IEEE Trans. Speech Audio Process. 7(1), 40–45 (1999)CrossRef
166.
go back to reference M. Van der Seijs, Improvements on time-frequency analysis using time-warping and timbre techniques. Master’s thesis, TU Delft (2011) M. Van der Seijs, Improvements on time-frequency analysis using time-warping and timbre techniques. Master’s thesis, TU Delft (2011)
168.
go back to reference J.G. Vargas-Rubio, B. Santhanam, An improved spectrogram using the multiangle centered discrete fractional Fourier transform, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 4 (2005), pp. 505–508 J.G. Vargas-Rubio, B. Santhanam, An improved spectrogram using the multiangle centered discrete fractional Fourier transform, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 4 (2005), pp. 505–508
169.
go back to reference S. Ventosa, C. Simon, M. Schimmel, J.J. Dañobeitia, A. Manuel, The S-transform from a wavelet point of view. IEEE Trans. Signal Process. 56(7), 2771–2780 (2008)MathSciNetCrossRef S. Ventosa, C. Simon, M. Schimmel, J.J. Dañobeitia, A. Manuel, The S-transform from a wavelet point of view. IEEE Trans. Signal Process. 56(7), 2771–2780 (2008)MathSciNetCrossRef
170.
go back to reference Y. Wang, J. Orchard, On the use of the Stockwell transform for image compression Proc. IS&T/SPIE Electron. Imaging, 724504 (2009) Y. Wang, J. Orchard, On the use of the Stockwell transform for image compression Proc. IS&T/SPIE Electron. Imaging, 724504 (2009)
171.
go back to reference L. Weruaga, M. Képesi, Speech analysis with the fast chirp transform, in Proceedings of the EUSIPCO (2004), pp. 1011–1014 L. Weruaga, M. Képesi, Speech analysis with the fast chirp transform, in Proceedings of the EUSIPCO (2004), pp. 1011–1014
172.
go back to reference L. Weruaga, M. Képesi, The fan-chirp transform for non-stationary harmonic sounds. Signal Process. 87, 1504–1522 (2007)MATHCrossRef L. Weruaga, M. Képesi, The fan-chirp transform for non-stationary harmonic sounds. Signal Process. 87, 1504–1522 (2007)MATHCrossRef
173.
go back to reference S.T. Wisdom, Improved statistical signal processing of nonstationary random processes using time-warping. Master’s thesis, University of Washington (2014) S.T. Wisdom, Improved statistical signal processing of nonstationary random processes using time-warping. Master’s thesis, University of Washington (2014)
175.
go back to reference Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)CrossRef Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)CrossRef
176.
go back to reference F. Xu, W. Zhou, Y. Zhen, Q. Yuan, Classification of ECoG with modified S-transform for brain-computer interface. J. Comput. Inf. Syst. 10(18), 8029–8041 (2014) F. Xu, W. Zhou, Y. Zhen, Q. Yuan, Classification of ECoG with modified S-transform for brain-computer interface. J. Comput. Inf. Syst. 10(18), 8029–8041 (2014)
177.
go back to reference Y. Yang, Z.K. Peng, G. Meng, W.M. Zhang, Characterize highly oscillating frequency modulation using generalized warblet transform. Mech. Syst. Signal Process. 26, 128–140 (2012)CrossRef Y. Yang, Z.K. Peng, G. Meng, W.M. Zhang, Characterize highly oscillating frequency modulation using generalized warblet transform. Mech. Syst. Signal Process. 26, 128–140 (2012)CrossRef
178.
go back to reference S. Yin, B. McCowan, Barking in domestic dogs: context specificity and individual identification. Anim. Behav. 68(2), 343–355 (2004)CrossRef S. Yin, B. McCowan, Barking in domestic dogs: context specificity and individual identification. Anim. Behav. 68(2), 343–355 (2004)CrossRef
179.
go back to reference F. Zhang, G. Bi, Y. Chen, Harmonic transform. IEE Proc. Vis. Image Signal Process. 151, 257–263 (2004)CrossRef F. Zhang, G. Bi, Y. Chen, Harmonic transform. IEE Proc. Vis. Image Signal Process. 151, 257–263 (2004)CrossRef
180.
go back to reference H. Zhang, C. Thurber, C. Rowe, Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93(5), 1904–1912 (2003)CrossRef H. Zhang, C. Thurber, C. Rowe, Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93(5), 1904–1912 (2003)CrossRef
181.
go back to reference M. Zibulski, Y.Y. Zeevi, Frame analysis of the discrete Gabor-scheme. IEEE Trans. Signal Process. 42(4), 942–945 (1994)CrossRef M. Zibulski, Y.Y. Zeevi, Frame analysis of the discrete Gabor-scheme. IEEE Trans. Signal Process. 42(4), 942–945 (1994)CrossRef
182.
go back to reference D. Zigone, D. Rivet, M. Radiguet, M. Campillo, C. Voisin, N. Cotte, J.S. Payero, Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 mw 8.8 Maule, Chile, earthquake. J. Geophys. Res.: Solid Earth 117(B09), 1–17 (2012) D. Zigone, D. Rivet, M. Radiguet, M. Campillo, C. Voisin, N. Cotte, J.S. Payero, Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 mw 8.8 Maule, Chile, earthquake. J. Geophys. Res.: Solid Earth 117(B09), 1–17 (2012)
183.
go back to reference H. Zou, Y. Chen, L. Qiao, S. Song, X. Lu, Y. Li, Acceleration-based dopplerlet transform-part ii: Implementations and applications to passive motion parameter estimation of moving sound source. Signal Process. 88(4), 952–971 (2008)MATHCrossRef H. Zou, Y. Chen, L. Qiao, S. Song, X. Lu, Y. Li, Acceleration-based dopplerlet transform-part ii: Implementations and applications to passive motion parameter estimation of moving sound source. Signal Process. 88(4), 952–971 (2008)MATHCrossRef
184.
go back to reference H. Zou, S. Song, Z. Liu, Y. Chen, Y. Li, Acceleration-based dopplerlet transform-part i: theory. Signal Process. 88(4), 934–951 (2008)MATHCrossRef H. Zou, S. Song, Z. Liu, Y. Chen, Y. Li, Acceleration-based dopplerlet transform-part i: theory. Signal Process. 88(4), 934–951 (2008)MATHCrossRef
185.
go back to reference P. Zubrycki, A. Petrovsky, Accurate speech decomposition into periodic and aperiodic components based on discrete harmonic transform, in Proceedings of the European Signal Processing Conference EUSIPCO (2007), pp. 2336–2340 P. Zubrycki, A. Petrovsky, Accurate speech decomposition into periodic and aperiodic components based on discrete harmonic transform, in Proceedings of the European Signal Processing Conference EUSIPCO (2007), pp. 2336–2340
186.
go back to reference P.E. Zwicke, I. Kiss, A new implementation of the Mellin transform and its application to radar classification of ships. IEEE Trans. Pattern Anal. Mach. Intell. 2, 191–199 (1983) P.E. Zwicke, I. Kiss, A new implementation of the Mellin transform and its application to radar classification of ships. IEEE Trans. Pattern Anal. Mach. Intell. 2, 191–199 (1983)
Metadata
Title
Time-Frequency Analysis
Author
Jose Maria Giron-Sierra
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2534-1_7