Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Time Marching Problems

Author : Lars Petter Røed

Published in: Atmospheres and Oceans on Computers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this chapter is to present some properties inherent in the governing equations listed in Sect. 1.​1. Most problems in the geophysical sciences, including atmospheres, oceans, seas, and lakes, involve solving so-called time marching problems. Typically, the state of the fluid in question is known at one specific time. As postulated by Bjerknes (Meteor Z 21:1–7, 1904) in his comments on weather forecasting (see quote in the preface), the aim is then to predict the state of the fluid at a later time. This is done by solving the governing equations listed in Sect. 1.​1. Such problems are known in mathematics as initial value problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
If the dependent variable is a vector, such as the velocity \(\mathbf {v}\), the flux becomes a tensor and (3.1) takes the form \(\partial _t\mathbf {v}+ \nabla \cdot \varvec{\mathscr {F}}= 0\), where \(\varvec{\mathscr {F}}\) is the flux tensor.
 
2
The total energy of a system consists of the internal energy and the mechanical energy. The internal energy is concerned with the heat content of a fluid and is an important part of its thermodynamics. In contrast, the mechanical energy concerns the motion of the fluid and is part of its dynamics.
 
3
It takes its name from Dr. Adolf Eugen Fick who formulated the parameterization given in (3.6) in 1855.
 
4
Geoffrey Ingram Taylor (1886–1975) made fundamental contributions to the study of turbulence, championing the need for a statistical theory and performing the first measurements of the effective diffusivity and viscosity of the atmosphere. He is remembered in the names attributed to several basic fluid flow instabilities (Taylor–Couette, Rayleigh–Taylor, and Saffman–Taylor).
 
5
The velocity variance is twice what is commonly referred to as the eddy kinetic energy.
 
Literature
go back to reference Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput Phys 17:173–265 Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput Phys 17:173–265
go back to reference Bjerknes V (1904) Das Problem der Vettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor Z 21:1–7 Bjerknes V (1904) Das Problem der Vettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor Z 21:1–7
go back to reference GESAMP (1991) (IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution), Coastal modelling, Technical report. International Atomic Energy Agency (IAEA), GESAMP Reports and Studies 43, 192 pp GESAMP (1991) (IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution), Coastal modelling, Technical report. International Atomic Energy Agency (IAEA), GESAMP Reports and Studies 43, 192 pp
go back to reference Gill AE (1982) Atmosphere–ocean dynamics. International geophysical series, vol 30. Academic, New York Gill AE (1982) Atmosphere–ocean dynamics. International geophysical series, vol 30. Academic, New York
go back to reference Hackett B, Røed LP, Gjevik B, Martinsen EA, Eide LI (1995) A review of the metocean modeling project (MOMOP). Part 2: model validation study. In: Lynch DR, Davies AM (eds) Quantitative skill assessment for coastal ocean models. Coastal and estuarine studies, vol 47. American Geophysical Union, Washington, pp 307–327 Hackett B, Røed LP, Gjevik B, Martinsen EA, Eide LI (1995) A review of the metocean modeling project (MOMOP). Part 2: model validation study. In: Lynch DR, Davies AM (eds) Quantitative skill assessment for coastal ocean models. Coastal and estuarine studies, vol 47. American Geophysical Union, Washington, pp 307–327
go back to reference Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 2:157–167 Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 2:157–167
go back to reference Lynch DR, Davies AM (1995) Quantitative skill assessment for coastal ocean models. Coastal and estuarine studies, vol 47. American Geophysical Union, Washington Lynch DR, Davies AM (1995) Quantitative skill assessment for coastal ocean models. Coastal and estuarine studies, vol 47. American Geophysical Union, Washington
go back to reference Røed LP (1997) Energy diagnostics in a 1\(\frac{1}{2}\)-layer, nonisopycnic model. J Phys Oceanogr 27:1472–1476 Røed LP (1997) Energy diagnostics in a 1\(\frac{1}{2}\)-layer, nonisopycnic model. J Phys Oceanogr 27:1472–1476
go back to reference Røed LP (1999) A pointwise energy diagnostic scheme for multilayer, nonisopycnic, primitive equation ocean models. Mon Weather Rev 127:1897–1911CrossRef Røed LP (1999) A pointwise energy diagnostic scheme for multilayer, nonisopycnic, primitive equation ocean models. Mon Weather Rev 127:1897–1911CrossRef
Metadata
Title
Time Marching Problems
Author
Lars Petter Røed
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-93864-6_3