Skip to main content
Top

2016 | OriginalPaper | Chapter

16. Tissue Engineering Scaffolds for Bone Repair: General Aspects

Authors : Andrés Díaz Lantada, Adrián de Blas Romero, Santiago Valido Moreno, Diego Curras, Miguel Téllez, Martin Schwentenwein, Christopher Jellinek, Johannes Homa

Published in: Microsystems for Enhanced Control of Cell Behavior

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hard tissue repair is a very relevant and challenging area for the emerging fields of tissue engineering and biofabrication due to the very complex three-dimensional structure of bones, which typically include important variations of porosities and related mechanical properties. The need of porous and rigid extra cellular matrices, of structural integrity, of functional gradients of mechanical properties and density, among other requirements, has led to the development of several families of biomaterials and scaffolds for the repair and regeneration of hard tissues, although a perfect solution has not yet been found. Further research is needed to address the advantages of different technologies and materials for manufacturing enhanced, even personalized, scaffolds for tissue engineering studies and extra cellular matrices with outer geometries defined as implants for tissue repair, as the niche composition and 3D structure play an important role in stem cells state and fate. The combined employment of computer-aided design, engineering and manufacturing (also CAD-CAE-CAM) resources, together with rapid prototyping procedures, working on the basis of additive manufacturing approaches, allows for the efficient development of knowledge-based functionally graded scaffolds for hard tissue repair in a wide range of materials and following biomimetic approaches. In this chapter we present some design and manufacturing strategies for the development of knowledge-based functionally graded tissue engineering scaffolds aimed at hard tissue repair. A complete case of study, linked to the development of a scaffold for tibial repair is also detailed to illustrate the proposed strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann Ashby MF (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann
go back to reference Bartolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36:1CrossRef Bartolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36:1CrossRef
go back to reference Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695CrossRef Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695CrossRef
go back to reference Chan CKF, Chen CC, Luppen CA, Kraft DL, Kim JB, De Boer A, Wei K, Helms JA, Kuo CJ, Weissman IL (2009) Endochondral ossification is required for hematopoietic stem cell niche formation. Nature 457(7228):490CrossRef Chan CKF, Chen CC, Luppen CA, Kraft DL, Kim JB, De Boer A, Wei K, Helms JA, Kuo CJ, Weissman IL (2009) Endochondral ossification is required for hematopoietic stem cell niche formation. Nature 457(7228):490CrossRef
go back to reference Chen WL, Likhitpanichkul M, Ho A, Simmons CA (2010) Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions. Biomaterials 31:2489CrossRef Chen WL, Likhitpanichkul M, Ho A, Simmons CA (2010) Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions. Biomaterials 31:2489CrossRef
go back to reference Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mat Sci Eng: Part C 47:237–247CrossRef Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mat Sci Eng: Part C 47:237–247CrossRef
go back to reference Díaz Lantada A (2013) Handbook of advanced design and manufacturing technologies for biodevices. Springer Díaz Lantada A (2013) Handbook of advanced design and manufacturing technologies for biodevices. Springer
go back to reference Díaz Lantada A, Lafont Morgado P (2012) Rapid prototyping for biomedical engineering: Current capabilities and challenges. Annu Rev Biomed Eng 14:73–96CrossRef Díaz Lantada A, Lafont Morgado P (2012) Rapid prototyping for biomedical engineering: Current capabilities and challenges. Annu Rev Biomed Eng 14:73–96CrossRef
go back to reference Díaz Lantada A, Mosquera A, Endrino JL, Lafont P (2010) Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J Appl Phys Conf Ser 252:012003 Díaz Lantada A, Mosquera A, Endrino JL, Lafont P (2010) Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J Appl Phys Conf Ser 252:012003
go back to reference Ekaputra AK, Zhou Y, Cool SMK, Hutmacher DM (2009) Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Eng Part A 15(12):3779CrossRef Ekaputra AK, Zhou Y, Cool SMK, Hutmacher DM (2009) Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Eng Part A 15(12):3779CrossRef
go back to reference Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14(12):1052–1058 Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14(12):1052–1058
go back to reference Gittard SD, Narayan RJ, Lusk J et al (2009) Rapid prototyping of scaphoid and lunate bones. Biotechnol J 4(1):129–134CrossRef Gittard SD, Narayan RJ, Lusk J et al (2009) Rapid prototyping of scaphoid and lunate bones. Biotechnol J 4(1):129–134CrossRef
go back to reference Goh RCW, Chang CN, Lin CL et al (2010) Customised fabricated implants after previous failed cranioplasty. J Plast Reconstr Aesthet Surg 63(9):1479–1484CrossRef Goh RCW, Chang CN, Lin CL et al (2010) Customised fabricated implants after previous failed cranioplasty. J Plast Reconstr Aesthet Surg 63(9):1479–1484CrossRef
go back to reference Infür R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J (2007) Functional polymers by two-photon 3D lithography. Appl Surf Sci 254:836CrossRef Infür R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J (2007) Functional polymers by two-photon 3D lithography. Appl Surf Sci 254:836CrossRef
go back to reference Kocacikli M, Korkmaz FM, Yazicioglu H et al (2010) Fabricating toe prostheses using 3D modeling technique: case report Turkiye Klinikleri Tip Bilimleri Dergisi 30(5):1750–1755 Kocacikli M, Korkmaz FM, Yazicioglu H et al (2010) Fabricating toe prostheses using 3D modeling technique: case report Turkiye Klinikleri Tip Bilimleri Dergisi 30(5):1750–1755
go back to reference Laschke MW, Rücker M, Jensen G, Carvalho C, Mülhaupt R, Gellrich NC, Menger MD (2008) Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. J Biomed Mat Res A 85(2):397CrossRef Laschke MW, Rücker M, Jensen G, Carvalho C, Mülhaupt R, Gellrich NC, Menger MD (2008) Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds. J Biomed Mat Res A 85(2):397CrossRef
go back to reference Lohfeld S, Tyndyk MA, Cahill S, Flaherty N, Barron V, Mc Hugh PE (2010) A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J Biomed Sci Eng 3:138CrossRef Lohfeld S, Tyndyk MA, Cahill S, Flaherty N, Barron V, Mc Hugh PE (2010) A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J Biomed Sci Eng 3:138CrossRef
go back to reference Maher PS, Keatch RP, Donnelly K, Paxton Z (2009) Formed 3D bio-scaffolds via rapid prototyping technology. In: Presented at 4th european conference of the IFMBE, IFMBE Proceedings 2009, vol 22, issue 17, p 2200 Maher PS, Keatch RP, Donnelly K, Paxton Z (2009) Formed 3D bio-scaffolds via rapid prototyping technology. In: Presented at 4th european conference of the IFMBE, IFMBE Proceedings 2009, vol 22, issue 17, p 2200
go back to reference Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld V, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mat Res A 65(4):489CrossRef Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld V, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mat Res A 65(4):489CrossRef
go back to reference Probst FA, Hutmacher DW, Muller DF et al (2010) Calvarial reconstruction by customized bioactive implant Handchirurgie Mikrochirurgie Plastiche. Chirurgie 42(6):369–373 Probst FA, Hutmacher DW, Muller DF et al (2010) Calvarial reconstruction by customized bioactive implant Handchirurgie Mikrochirurgie Plastiche. Chirurgie 42(6):369–373
go back to reference Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029CrossRef Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029CrossRef
go back to reference Ryan GE, Pandit AS, Apatsidis D (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625CrossRef Ryan GE, Pandit AS, Apatsidis D (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625CrossRef
go back to reference Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F (2007a) Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents. J Macromol Sci A 44:547CrossRef Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F (2007a) Evaluation of biocompatible photopolymers I: photoreactivity and mechanical properties of reactive diluents. J Macromol Sci A 44:547CrossRef
go back to reference Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F (2007b) Evaluation of biocompatible photopolymers II: further reactive diluents. Monatsh Chem 138:261CrossRef Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F (2007b) Evaluation of biocompatible photopolymers II: further reactive diluents. Monatsh Chem 138:261CrossRef
go back to reference Schwentenwein M, Homa J (2015) Additive manufacture of dense alumina ceramics. Appl Ceram Technol 12(1):1–7 Schwentenwein M, Homa J (2015) Additive manufacture of dense alumina ceramics. Appl Ceram Technol 12(1):1–7
go back to reference Stampfl J, Fouad H, Seidler S, Liska R, Schwanger RF, Woesz A, Fratzl P (2004) Fabrication and moulding of cellular materials by rapid prototyping. Int J Mater Prod Technol 21(4):285CrossRef Stampfl J, Fouad H, Seidler S, Liska R, Schwanger RF, Woesz A, Fratzl P (2004) Fabrication and moulding of cellular materials by rapid prototyping. Int J Mater Prod Technol 21(4):285CrossRef
go back to reference Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolitoraphy. J Micromech Microeng 18:125014CrossRef Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolitoraphy. J Micromech Microeng 18:125014CrossRef
go back to reference Tan JY, Chua CK, Leong KF (2010) Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys Prototyping 5(1):45CrossRef Tan JY, Chua CK, Leong KF (2010) Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys Prototyping 5(1):45CrossRef
go back to reference Tan JY, Chua CK, Leong KF (2013) Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect rapid prototyping technique. Biomed Microdevices 15:83CrossRef Tan JY, Chua CK, Leong KF (2013) Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect rapid prototyping technique. Biomed Microdevices 15:83CrossRef
go back to reference Thomas WE, Discher DE, Shastri VP (2010) Mechanical regulation of cells by materials and tissues. MRS Bull 35:578CrossRef Thomas WE, Discher DE, Shastri VP (2010) Mechanical regulation of cells by materials and tissues. MRS Bull 35:578CrossRef
go back to reference Tzezana R, Zussman E, Levenberg SA (2008) Ultra-porous scaffold for tissue engineering, created via a hydrospinning method. Tissue Eng Part C 14(4):281CrossRef Tzezana R, Zussman E, Levenberg SA (2008) Ultra-porous scaffold for tissue engineering, created via a hydrospinning method. Tissue Eng Part C 14(4):281CrossRef
go back to reference Wang W, Poh CK (2013) Titanium alloys in orthopaedics. In Tech 1–20 Wang W, Poh CK (2013) Titanium alloys in orthopaedics. In Tech 1–20
go back to reference Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S (2009) Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C: Methods 15(2):115CrossRef Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S (2009) Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C: Methods 15(2):115CrossRef
go back to reference Wolfram T (2014) Industrial development for resorbable CMF implants. In: KMM-VIN 2nd Industrial Workshop Current research and industrial issues in bone implant development. Fraunhofer IFAM Bremen, Germany Wolfram T (2014) Industrial development for resorbable CMF implants. In: KMM-VIN 2nd Industrial Workshop Current research and industrial issues in bone implant development. Fraunhofer IFAM Bremen, Germany
Metadata
Title
Tissue Engineering Scaffolds for Bone Repair: General Aspects
Authors
Andrés Díaz Lantada
Adrián de Blas Romero
Santiago Valido Moreno
Diego Curras
Miguel Téllez
Martin Schwentenwein
Christopher Jellinek
Johannes Homa
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29328-8_16