Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Tools and Electrochemical In Situ and On-Line Characterization Techniques for Nanomaterials

Authors : Têko W. Napporn, Laetitia Dubau, Claudia Morais, Mariana R. Camilo, Julien Durst, Fabio H. B. Lima, Frédéric Maillard, K. Boniface Kokoh

Published in: In-situ Characterization Techniques for Nanomaterials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last century, progress in electrochemistry and electrocatalysis was very spectacular due to the remarkable evolution in surface science, chemistry, and physics. Electrochemical study of perfect smooth or bulk materials was the usual way to understand the interaction between the surfaces of such materials with their close environment. Therefore, any modification of the surface structure or composition provides change in the material behavior and the nature of the adsorbed species or near. Usually, the modification of smooth surface consists in the increase of its roughness factor through the deposition of sublayer or layer of metal particles. The deposition can be done on a well-defined surface (model electrode with a known crystallographic structure) [1]. Then, surface modification becomes a way of creating new active sites to enhance the reactivity of molecules. The development of nanoscale materials has changed the approach of studying and identifying active sites in heterogeneous catalysis, and particularly in electrocatalysis. Indeed, electrocatalysis uses the surface of a material, which is submitted to an electrode potential, as the reaction site. Therefore, the material structure, morphology and its composition are the key parameters to control the electrochemical process [2]. The nature of the active site depends on these parameters. Furthermore, the assessment of the nature of the active site before, during, and after the electrocatalytic reaction becomes a huge challenge. Thereby, electrochemical tools like cyclic voltammetry, underpotential deposition of a monolayer of a species [3–5], the specific adsorption of species or molecule, and CO stripping [6] were the first approaches. It is the basic measurement of the electrons flow through the surface per unit of time during the reaction at the surface. Therefore, the electric current per area unit represents the charge transfer reaction that occurs at a metal-solution interface. Since the middle of the last century, an increase in the development of several in situ spectroscopic techniques was observed due to the need of understanding the structure of the interface between electrodes and solutions. Indeed, coupling the electrochemistry measurements to other techniques such as Fourier Transform Infrared Spectroscopy (FTIRS), X-Ray Diffraction (XRD) [7, 8], Transmission Electron Microscopy (TEM) [9], Scanning Tunneling Microscopy (STM) [10], Surface-Enhanced Raman Scattering (SERS) [11] becomes a suitable approach to assess in real time at the electrified interface electrode-solution; some relevant data on electrocatalysts structure, morphology, composition, and stability of materials; and on the reaction intermediates and products. The identification of the surface state in addition to that of adsorbed species, intermediates, and products of the reaction process have permitted to determine a mechanistic pathway which is essential for enhancing the material performance and selectivity. It appears obvious that the identification of surface state of a nanomaterial under realistic electrochemical reaction conditions represents a noble scientific breakthrough. In the present chapter, for the first time some techniques coupled with electrochemistry able to characterize nanomaterials as electrodes will be extensively addressed. This chapter will also show the progress in in situ electrochemical approaches. One motivated approach is to be able to characterize electrochemically and experimentally the surface of the nanoparticle. Therefore, in the first part of the chapter, an example of a pure electrochemical tool, which permits to probe the nanoelectrocatalyst surface, is discussed. Although the progress in nanotechnology increases rapidly, various tools have been developed in electrochemistry for understanding the reaction pathway, intermediates, and products formation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wadayama T, Todoroki N, Yamada Y, Sugawara T et al (2010) Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Electrochem Commun 12(8):1112–1115CrossRef Wadayama T, Todoroki N, Yamada Y, Sugawara T et al (2010) Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Electrochem Commun 12(8):1112–1115CrossRef
2.
go back to reference Kang Y, Yang P, Markovic NM, Stamenkovic VR (2016) Shaping electrocatalysis through tailored nanomaterials. Nano Today 11(5):587–600CrossRef Kang Y, Yang P, Markovic NM, Stamenkovic VR (2016) Shaping electrocatalysis through tailored nanomaterials. Nano Today 11(5):587–600CrossRef
3.
go back to reference Coutanceau C, Urchaga P, Brimaud S, Baranton S (2012) Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3(2):75–87CrossRef Coutanceau C, Urchaga P, Brimaud S, Baranton S (2012) Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3(2):75–87CrossRef
4.
go back to reference Hernandez J, Solla-Gullon J, Herrero E, Feliu JM et al (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9(4):2256–2273CrossRef Hernandez J, Solla-Gullon J, Herrero E, Feliu JM et al (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9(4):2256–2273CrossRef
5.
go back to reference Hebié S, Cornu L, Napporn TW, Rousseau J et al (2013) Insight on the surface structure effect of free gold nanorods on glucose electrooxidation. J Phys Chem C 117(19):9872–9880CrossRef Hebié S, Cornu L, Napporn TW, Rousseau J et al (2013) Insight on the surface structure effect of free gold nanorods on glucose electrooxidation. J Phys Chem C 117(19):9872–9880CrossRef
6.
go back to reference Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Evidence of an eley-rideal mechanism in the stripping of a saturation layer of chemisorbed CO on platinum nanoparticles. Langmuir 28(36):13094–13104CrossRef Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Evidence of an eley-rideal mechanism in the stripping of a saturation layer of chemisorbed CO on platinum nanoparticles. Langmuir 28(36):13094–13104CrossRef
7.
go back to reference Sibert E, Wang L, De Santis M, Soldo-Olivier Y (2014) Mechanisms of the initial steps in the Pd electro-deposition onto Au(111). Electrochim Acta 135(594–603CrossRef Sibert E, Wang L, De Santis M, Soldo-Olivier Y (2014) Mechanisms of the initial steps in the Pd electro-deposition onto Au(111). Electrochim Acta 135(594–603CrossRef
8.
go back to reference Oliveira VL, Sibert E, Soldo-Olivier Y, Ticianelli EA et al (2016) Borohydride electrooxidation reaction on Pt(111) and Pt(111) modified by a pseudomorphic Pd monolayer. Electrochim Acta 190:790–796CrossRef Oliveira VL, Sibert E, Soldo-Olivier Y, Ticianelli EA et al (2016) Borohydride electrooxidation reaction on Pt(111) and Pt(111) modified by a pseudomorphic Pd monolayer. Electrochim Acta 190:790–796CrossRef
9.
go back to reference Lopez-Haro M, Guétaz L, Printemps T, Morin A et al (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229. 1–6CrossRef Lopez-Haro M, Guétaz L, Printemps T, Morin A et al (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229. 1–6CrossRef
10.
go back to reference Wakisaka M, Asizawa S, Yoneyama T, Uchida H et al (2010) In situ STM observation of the CO Adlayer on a Pt(110) electrode in 0.1 M HClO4 solution. Langmuir 26(12):9191–9194CrossRef Wakisaka M, Asizawa S, Yoneyama T, Uchida H et al (2010) In situ STM observation of the CO Adlayer on a Pt(110) electrode in 0.1 M HClO4 solution. Langmuir 26(12):9191–9194CrossRef
11.
go back to reference Li D, Jia SJ, Fodjo EK, Xu H et al (2016) In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode. Appl Surf Sci 367:153–159CrossRef Li D, Jia SJ, Fodjo EK, Xu H et al (2016) In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode. Appl Surf Sci 367:153–159CrossRef
12.
go back to reference Sánchez-Sánchez CM, Vidal-Iglesias FJ, Solla-Gullón J, Montiel V et al (2010) Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochim Acta 55(27):8252–8257CrossRef Sánchez-Sánchez CM, Vidal-Iglesias FJ, Solla-Gullón J, Montiel V et al (2010) Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochim Acta 55(27):8252–8257CrossRef
13.
go back to reference Urchaga P, Baranton S, Coutanceau C (2013) Changes in COchem oxidative stripping activity induced by reconstruction of Pt (111) and (100) surface nanodomains. Electrochim Acta 92(438–445CrossRef Urchaga P, Baranton S, Coutanceau C (2013) Changes in COchem oxidative stripping activity induced by reconstruction of Pt (111) and (100) surface nanodomains. Electrochim Acta 92(438–445CrossRef
14.
go back to reference Hebié S, Napporn TW, Morais C, Kokoh KB (2016) Size-dependent Electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. ChemPhysChem 17(10):1454–1462CrossRef Hebié S, Napporn TW, Morais C, Kokoh KB (2016) Size-dependent Electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. ChemPhysChem 17(10):1454–1462CrossRef
15.
go back to reference Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J Electroanal Chem 407(1–2):1–11CrossRef Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J Electroanal Chem 407(1–2):1–11CrossRef
16.
go back to reference Hebié S, Kokoh KB, Servat K, Napporn T (2013) Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation. Gold Bull 46(4):311–318CrossRef Hebié S, Kokoh KB, Servat K, Napporn T (2013) Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation. Gold Bull 46(4):311–318CrossRef
17.
go back to reference Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232CrossRef Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599(2):221–232CrossRef
18.
go back to reference Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V et al (2005) CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim Acta 50(25):5144–5154CrossRef Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V et al (2005) CO surface electrochemistry on Pt-nanoparticles: a selective review. Electrochim Acta 50(25):5144–5154CrossRef
19.
go back to reference Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Electro-oxidation of COchem on Pt Nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28(7):3658–3663CrossRef Urchaga P, Baranton S, Coutanceau C, Jerkiewicz G (2012) Electro-oxidation of COchem on Pt Nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28(7):3658–3663CrossRef
20.
go back to reference Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440(1–2):L809–L814CrossRef Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf Sci 440(1–2):L809–L814CrossRef
21.
go back to reference Tollan C, Echeberria J, Marcilla R, Pomposo J et al (2009) One-step growth of gold nanorods using a β-diketone reducing agent. J Nanopart Res 11(5):1241–1245CrossRef Tollan C, Echeberria J, Marcilla R, Pomposo J et al (2009) One-step growth of gold nanorods using a β-diketone reducing agent. J Nanopart Res 11(5):1241–1245CrossRef
22.
go back to reference Coutanceau C, Urchaga P, Baranton S (2012) Diffusion of adsorbed CO on platinum (100) and (111) oriented nanosurfaces. Electrochem Commun 22(109–112CrossRef Coutanceau C, Urchaga P, Baranton S (2012) Diffusion of adsorbed CO on platinum (100) and (111) oriented nanosurfaces. Electrochem Commun 22(109–112CrossRef
23.
go back to reference Ferreira PJ, La O’ GJ, Shao-Horn Y, Morgan D et al (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152(11):A2256–A2271CrossRef Ferreira PJ, La O’ GJ, Shao-Horn Y, Morgan D et al (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152(11):A2256–A2271CrossRef
24.
go back to reference Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35CrossRef Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35CrossRef
25.
go back to reference Sompalli B, Litteer BA, Gu W, Gasteiger HA (2007) Membrane degradation at catalyst layer edges in PEMFC MEAs. J Electrochem Soc 154(12):B1349–B1357CrossRef Sompalli B, Litteer BA, Gu W, Gasteiger HA (2007) Membrane degradation at catalyst layer edges in PEMFC MEAs. J Electrochem Soc 154(12):B1349–B1357CrossRef
26.
go back to reference Chen S, Gasteiger HA, Hayakawa K, Tada T et al (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157(1):A82–A97CrossRef Chen S, Gasteiger HA, Hayakawa K, Tada T et al (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157(1):A82–A97CrossRef
27.
go back to reference Xie J, Wood DL, More KL, Atanassov P et al (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152(5):A1011–A1020CrossRef Xie J, Wood DL, More KL, Atanassov P et al (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152(5):A1011–A1020CrossRef
28.
go back to reference Borup R, Meyers J, Pivovar B, Kim YS et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951CrossRef Borup R, Meyers J, Pivovar B, Kim YS et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951CrossRef
29.
go back to reference Guilminot E, Corcella A, Charlot F, Maillard F et al (2007) Detection of Ptz+ ions and Pt nanoparticles inside the membrane of a used PEMFC. J Electrochem Soc 154(1):B96–B105CrossRef Guilminot E, Corcella A, Charlot F, Maillard F et al (2007) Detection of Ptz+ ions and Pt nanoparticles inside the membrane of a used PEMFC. J Electrochem Soc 154(1):B96–B105CrossRef
30.
go back to reference Guilminot E, Corcella A, Iojoiu C, Berthomé G et al (2007) Membrane and active layer degradation upon proton exchange membrane fuel cell steady-state operation – Part I: platinum dissolution and redistribution within the membrane electrode assembly. J Electrochem Soc 154(11):B1106–B1114CrossRef Guilminot E, Corcella A, Iojoiu C, Berthomé G et al (2007) Membrane and active layer degradation upon proton exchange membrane fuel cell steady-state operation – Part I: platinum dissolution and redistribution within the membrane electrode assembly. J Electrochem Soc 154(11):B1106–B1114CrossRef
31.
go back to reference Iojoiu C, Guilminot E, Maillard F, Chatenet M et al (2007) Membrane and active layer degradation following PEMFC steady-state operation. J Electrochem Soc 154(11):B1115–B1120CrossRef Iojoiu C, Guilminot E, Maillard F, Chatenet M et al (2007) Membrane and active layer degradation following PEMFC steady-state operation. J Electrochem Soc 154(11):B1115–B1120CrossRef
32.
go back to reference Chatenet M, Guétaz L, Maillard F (2009) Electron microscopy to study MEA materials and structure degradation. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells: fundamentals, technology, and applications, vol 5. Wiley, Oxford, pp 844–860 Chatenet M, Guétaz L, Maillard F (2009) Electron microscopy to study MEA materials and structure degradation. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells: fundamentals, technology, and applications, vol 5. Wiley, Oxford, pp 844–860
33.
go back to reference Dubau L, Maillard F, Chatenet M, André J et al (2010) Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim Acta 56(2):776–783CrossRef Dubau L, Maillard F, Chatenet M, André J et al (2010) Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim Acta 56(2):776–783CrossRef
34.
go back to reference Dubau L, Maillard F, Chatenet M, Guétaz L et al (2010) Durability of Pt3Co/C cathodes in a 16 cell PEMFC stack: macro/microstructural changes and degradation mechanisms. J Electrochem Soc 157(12):B1887–B1895CrossRef Dubau L, Maillard F, Chatenet M, Guétaz L et al (2010) Durability of Pt3Co/C cathodes in a 16 cell PEMFC stack: macro/microstructural changes and degradation mechanisms. J Electrochem Soc 157(12):B1887–B1895CrossRef
35.
go back to reference Dubau L, Durst J, Maillard F, Guétaz L et al (2011) Further insights into the durability of Pt3Co/C electrocatalysts: formation of “hollow” Pt nanoparticles induced by the Kirkendall effect. Electrochim Acta 56(28):10658–10667CrossRef Dubau L, Durst J, Maillard F, Guétaz L et al (2011) Further insights into the durability of Pt3Co/C electrocatalysts: formation of “hollow” Pt nanoparticles induced by the Kirkendall effect. Electrochim Acta 56(28):10658–10667CrossRef
36.
go back to reference Dubau L, Lopez-Haro M, Castanheira L, Durst J et al (2013) Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC ageing test. Appl Catal B Environ 142:801–808CrossRef Dubau L, Lopez-Haro M, Castanheira L, Durst J et al (2013) Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC ageing test. Appl Catal B Environ 142:801–808CrossRef
37.
go back to reference Durst J, Lamibrac A, Charlot F, Dillet J et al (2013) Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: inlet vs. outlet and channel vs. land. Appl Catal B Environ 138–139:416–426CrossRef Durst J, Lamibrac A, Charlot F, Dillet J et al (2013) Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: inlet vs. outlet and channel vs. land. Appl Catal B Environ 138–139:416–426CrossRef
38.
go back to reference Lopez-Haro M, Dubau L, Guétaz L, Bayle-Guillemaud P et al (2014) Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: a STEM–EELS study. Appl Catal B Environ 152–153:300–308CrossRef Lopez-Haro M, Dubau L, Guétaz L, Bayle-Guillemaud P et al (2014) Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: a STEM–EELS study. Appl Catal B Environ 152–153:300–308CrossRef
39.
go back to reference Shao-Horn Y, Sheng W, Chen S, Ferreira P et al (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3):285–305CrossRef Shao-Horn Y, Sheng W, Chen S, Ferreira P et al (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3):285–305CrossRef
40.
go back to reference Dubau L, Durst J, Maillard F, Chatenet M et al (2012) Heterogeneities of aging within a PEMFC MEA. Fuel Cells 12(2):188–198CrossRef Dubau L, Durst J, Maillard F, Chatenet M et al (2012) Heterogeneities of aging within a PEMFC MEA. Fuel Cells 12(2):188–198CrossRef
41.
go back to reference Lamibrac A, Maranzana G, Dillet J, Lottin O et al (2012) Local degradations resulting from repeated start-ups and shut-downs in proton exchange membrane fuel cell (PEMFC). Energy Procedia 29:318–324CrossRef Lamibrac A, Maranzana G, Dillet J, Lottin O et al (2012) Local degradations resulting from repeated start-ups and shut-downs in proton exchange membrane fuel cell (PEMFC). Energy Procedia 29:318–324CrossRef
42.
go back to reference Nikkuni FR, Vion-Dury B, Dubau L, Maillard F et al (2014) The role of water in the degradation of Pt3Co/C nanoparticles: an identical location transmission electron microscopy study in polymer electrolyte environment. Appl Catal B Environ 156–157:301–306CrossRef Nikkuni FR, Vion-Dury B, Dubau L, Maillard F et al (2014) The role of water in the degradation of Pt3Co/C nanoparticles: an identical location transmission electron microscopy study in polymer electrolyte environment. Appl Catal B Environ 156–157:301–306CrossRef
43.
go back to reference Nikkuni FR, Dubau L, Ticianelli EA, Chatenet M (2015) Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B Environ 176–177:486–499CrossRef Nikkuni FR, Dubau L, Ticianelli EA, Chatenet M (2015) Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B Environ 176–177:486–499CrossRef
44.
go back to reference Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147CrossRef Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147CrossRef
45.
go back to reference Meier JC, Galeano C, Katsounaros I, Witte J et al (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5(1):44–67CrossRef Meier JC, Galeano C, Katsounaros I, Witte J et al (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5(1):44–67CrossRef
46.
go back to reference Dubau L, Castanheira L, Berthomé G, Maillard F (2013) An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochim Acta 110:273–281CrossRef Dubau L, Castanheira L, Berthomé G, Maillard F (2013) An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochim Acta 110:273–281CrossRef
47.
go back to reference Hartl K, Hanzlik M, Arenz M (2011) IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci 4(1):234–238CrossRef Hartl K, Hanzlik M, Arenz M (2011) IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci 4(1):234–238CrossRef
48.
go back to reference Zana A, Speder J, Roefzaad M, Altmann L et al (2013) Probing degradation by IL-TEM: the influence of stress test conditions on the degradation mechanism. J Electrochem Soc 160(6):F608–F615CrossRef Zana A, Speder J, Roefzaad M, Altmann L et al (2013) Probing degradation by IL-TEM: the influence of stress test conditions on the degradation mechanism. J Electrochem Soc 160(6):F608–F615CrossRef
49.
go back to reference Dubau L, Maillard F (2016) Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts. Electrochem Commun 63:65–69CrossRef Dubau L, Maillard F (2016) Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts. Electrochem Commun 63:65–69CrossRef
50.
go back to reference Castanheira L, Dubau L, Maillard F (2014) Accelerated stress tests of Pt/HSAC electrocatalysts: an identical-location transmission electron microscopy study on the influence of intermediate characterizations. Electrocatalysis 5(2):125–135CrossRef Castanheira L, Dubau L, Maillard F (2014) Accelerated stress tests of Pt/HSAC electrocatalysts: an identical-location transmission electron microscopy study on the influence of intermediate characterizations. Electrocatalysis 5(2):125–135CrossRef
51.
go back to reference Yu YC, Xin HLL, Hovden R, Wang DL et al (2012) Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12(9):4417–4423CrossRef Yu YC, Xin HLL, Hovden R, Wang DL et al (2012) Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12(9):4417–4423CrossRef
52.
go back to reference Baldizzone C, Gan L, Hodnik N, Keeley GP et al (2015) Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal 5(9):5000–5007CrossRef Baldizzone C, Gan L, Hodnik N, Keeley GP et al (2015) Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal 5(9):5000–5007CrossRef
53.
go back to reference Meier JC, Galeano C, Katsounaros I, Topalov AA et al (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRef Meier JC, Galeano C, Katsounaros I, Topalov AA et al (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRef
55.
go back to reference Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev Columbus 104(10):4613–4636CrossRef Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev Columbus 104(10):4613–4636CrossRef
56.
go back to reference Siebel A, Gorlin Y, Durst J, Proux O et al (2016) Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal 6(11):7326–7334CrossRef Siebel A, Gorlin Y, Durst J, Proux O et al (2016) Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal 6(11):7326–7334CrossRef
57.
go back to reference Croze V, Ettingshausen F, Melke J, Soehn M et al (2010) The use of in situ X-ray absorption spectroscopy in applied fuel cell research. J Appl Electrochem 40(5):877–883CrossRef Croze V, Ettingshausen F, Melke J, Soehn M et al (2010) The use of in situ X-ray absorption spectroscopy in applied fuel cell research. J Appl Electrochem 40(5):877–883CrossRef
58.
go back to reference Wandt J, Freiberg A, Thomas R, Gorlin Y et al (2016) Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J Mater Chem A 4(47):18300–18305CrossRef Wandt J, Freiberg A, Thomas R, Gorlin Y et al (2016) Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J Mater Chem A 4(47):18300–18305CrossRef
59.
go back to reference Adora S, Soldo-Olivier Y, Faure R, Durand R et al (2001) Electrochemical preparation of platinum nanocrystallites on activated carbon studied by X-ray absorption spectroscopy. J Phys Chem B 105(43):10489–10495CrossRef Adora S, Soldo-Olivier Y, Faure R, Durand R et al (2001) Electrochemical preparation of platinum nanocrystallites on activated carbon studied by X-ray absorption spectroscopy. J Phys Chem B 105(43):10489–10495CrossRef
60.
go back to reference Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448(2):163–171CrossRef Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448(2):163–171CrossRef
61.
go back to reference Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108(30):11011–11023CrossRef Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108(30):11011–11023CrossRef
62.
go back to reference Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2007) Site-specific vs specific adsorption of anions on Pt and Pt-based alloys. J Phys Chem C 111(26):9267–9274CrossRef Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2007) Site-specific vs specific adsorption of anions on Pt and Pt-based alloys. J Phys Chem C 111(26):9267–9274CrossRef
63.
go back to reference Dixon D, Habereder A, Farmand M, Kaserer S et al (2012) Space resolved, in operando X-ray absorption spectroscopy: investigations on both the anode and cathode in a direct methanol fuel cell. J Phys Chem C 116(13):7587–7595CrossRef Dixon D, Habereder A, Farmand M, Kaserer S et al (2012) Space resolved, in operando X-ray absorption spectroscopy: investigations on both the anode and cathode in a direct methanol fuel cell. J Phys Chem C 116(13):7587–7595CrossRef
64.
go back to reference Melke J, Schoekel A, Dixon D, Cremers C et al (2010) Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by operando X-ray absorption spectroscopy. J Phys Chem C 114(13):5914–5925CrossRef Melke J, Schoekel A, Dixon D, Cremers C et al (2010) Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by operando X-ray absorption spectroscopy. J Phys Chem C 114(13):5914–5925CrossRef
65.
go back to reference Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116CrossRef Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116CrossRef
66.
go back to reference Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108:4127–4133CrossRef Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108:4127–4133CrossRef
67.
go back to reference Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247CrossRef Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247CrossRef
68.
go back to reference Jia Q, Caldwell K, Strickland K, Ziegelbauer JM et al (2015) Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: strain, ligand, and particle size effects. ACS Catal 5(1):176–186CrossRef Jia Q, Caldwell K, Strickland K, Ziegelbauer JM et al (2015) Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: strain, ligand, and particle size effects. ACS Catal 5(1):176–186CrossRef
69.
go back to reference Pourbaix M (1979) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, p 453 Pourbaix M (1979) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, p 453
70.
go back to reference Jia Q, Li J, Caldwell K, Ramaker DE et al (2016) Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis. ACS Catal 6(2):928–938CrossRef Jia Q, Li J, Caldwell K, Ramaker DE et al (2016) Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis. ACS Catal 6(2):928–938CrossRef
71.
go back to reference Durst J, Lopez-Haro M, Dubau L, Chatenet M et al (2014) Reversibility of Pt-skin and Pt-skeleton nanostructures in acidic media. J Phys Chem Lett 5(3):434–439CrossRef Durst J, Lopez-Haro M, Dubau L, Chatenet M et al (2014) Reversibility of Pt-skin and Pt-skeleton nanostructures in acidic media. J Phys Chem Lett 5(3):434–439CrossRef
72.
go back to reference Maillard F, Dubau L, Durst J, Chatenet M et al (2010) Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk co segregation to the surface. Electrochem Commun 12(9):1161–1164CrossRef Maillard F, Dubau L, Durst J, Chatenet M et al (2010) Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk co segregation to the surface. Electrochem Commun 12(9):1161–1164CrossRef
73.
go back to reference Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction – an in-situ XANES and EXAFS investigation. J Electrochem Soc 142(5):1409–1422CrossRef Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction – an in-situ XANES and EXAFS investigation. J Electrochem Soc 142(5):1409–1422CrossRef
74.
go back to reference Teliska M, O’Grady WE, Ramaker DE (2004) Determination of H adsorption sites on Pt/C electrodes in HClO4 from Pt L23 X-ray absorption spectroscopy. J Phys Chem B 108(7):2333–2344CrossRef Teliska M, O’Grady WE, Ramaker DE (2004) Determination of H adsorption sites on Pt/C electrodes in HClO4 from Pt L23 X-ray absorption spectroscopy. J Phys Chem B 108(7):2333–2344CrossRef
75.
go back to reference Teliska M, O’Grady WE, Ramaker DE (2005) Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy. J Phys Chem B 109(16):8076–8084CrossRef Teliska M, O’Grady WE, Ramaker DE (2005) Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L23 X-ray absorption spectroscopy. J Phys Chem B 109(16):8076–8084CrossRef
76.
go back to reference Bard AJ, Faulkner LR (1993) Electrochemical methods. Wiley, Weinheim Bard AJ, Faulkner LR (1993) Electrochemical methods. Wiley, Weinheim
77.
go back to reference Bewick A, Kunimatsu K (1980) Infra red spectroscopy of the electrode-electrolyte interphase. Surf Sci 101(1–3):131–138CrossRef Bewick A, Kunimatsu K (1980) Infra red spectroscopy of the electrode-electrolyte interphase. Surf Sci 101(1–3):131–138CrossRef
78.
go back to reference Bewick A, Kunimatsu K, Pons BS (1980) Infrared-spectroscopy of the electrode-electrolyte interphase. Electrochim Acta 25(4):465–468CrossRef Bewick A, Kunimatsu K, Pons BS (1980) Infrared-spectroscopy of the electrode-electrolyte interphase. Electrochim Acta 25(4):465–468CrossRef
79.
go back to reference Beden B, Bewick A, Lamy C (1983) A comparative-study of formic-acid adsorption on a platinum-electrode by both electrochemical and emirs techniques. J Electroanal Chem 150(1–2):505–511CrossRef Beden B, Bewick A, Lamy C (1983) A comparative-study of formic-acid adsorption on a platinum-electrode by both electrochemical and emirs techniques. J Electroanal Chem 150(1–2):505–511CrossRef
80.
go back to reference Bewick A, Kunimatsu K, Pons BS, Russell JW (1984) Electrochemically modulated infrared-spectroscopy (emirs)-experimental details. J Electroanal Chem 160(1–2):47–61CrossRef Bewick A, Kunimatsu K, Pons BS, Russell JW (1984) Electrochemically modulated infrared-spectroscopy (emirs)-experimental details. J Electroanal Chem 160(1–2):47–61CrossRef
81.
go back to reference Beden B, Bewick A, Lamy C (1983) A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic-acid at a platinum-electrode. J Electroanal Chem 148(1):147–160CrossRef Beden B, Bewick A, Lamy C (1983) A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic-acid at a platinum-electrode. J Electroanal Chem 148(1):147–160CrossRef
82.
go back to reference Leung LWH, Weaver MJ (1988) Real-time ftir spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways for small organic-molecules. J Phys Chem 92(14):4019–4022CrossRef Leung LWH, Weaver MJ (1988) Real-time ftir spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways for small organic-molecules. J Phys Chem 92(14):4019–4022CrossRef
83.
go back to reference Corrigan DS, Weaver MJ (1988) Mechanisms of formic-acid, methanol, and carbon-monoxide electrooxidation at platinum as examined by single potential alteration infrared-spectroscopy. J Electroanal Chem 241(1–2):143–162CrossRef Corrigan DS, Weaver MJ (1988) Mechanisms of formic-acid, methanol, and carbon-monoxide electrooxidation at platinum as examined by single potential alteration infrared-spectroscopy. J Electroanal Chem 241(1–2):143–162CrossRef
84.
go back to reference Davidson T, Pons BS, Bewick A, Schmidt PP (1981) Vibrational spectroscopy of the electrode-electrolyte interface – use of fourier-transform infrared-spectroscopy. J Electroanal Chem 125(1):237–241CrossRef Davidson T, Pons BS, Bewick A, Schmidt PP (1981) Vibrational spectroscopy of the electrode-electrolyte interface – use of fourier-transform infrared-spectroscopy. J Electroanal Chem 125(1):237–241CrossRef
85.
go back to reference Pons S, Davidson T, Bewick A (1984) Vibrational spectroscopy of the electrode electrolyte interface .4. Fourier-transform infrared-spectroscopy – experimental considerations. J Electroanal Chem 160(1–2):63–71CrossRef Pons S, Davidson T, Bewick A (1984) Vibrational spectroscopy of the electrode electrolyte interface .4. Fourier-transform infrared-spectroscopy – experimental considerations. J Electroanal Chem 160(1–2):63–71CrossRef
86.
go back to reference Pons S, Davidson T, Bewick A (1983) Vibrational spectroscopy of the electrode solution interphase .2. Use of fourier-transform spectroscopy for recording infrared-spectra of radical ion intermediates. J Am Chem Soc 105(7):1802–1805CrossRef Pons S, Davidson T, Bewick A (1983) Vibrational spectroscopy of the electrode solution interphase .2. Use of fourier-transform spectroscopy for recording infrared-spectra of radical ion intermediates. J Am Chem Soc 105(7):1802–1805CrossRef
87.
go back to reference Pons S (1983) The use of fourier-transform infrared-spectroscopy for insitu recording of species in the electrode electrolyte solution interphase. J Electroanal Chem 150(1–2):495–504CrossRef Pons S (1983) The use of fourier-transform infrared-spectroscopy for insitu recording of species in the electrode electrolyte solution interphase. J Electroanal Chem 150(1–2):495–504CrossRef
88.
go back to reference Lin WF, Sun SG (1996) In situ FTIRS investigations of surface processes of Rh electrode – novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution. Electrochim Acta 41(6):803–809CrossRef Lin WF, Sun SG (1996) In situ FTIRS investigations of surface processes of Rh electrode – novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution. Electrochim Acta 41(6):803–809CrossRef
89.
go back to reference Pons S, Davidson T, Bewick A (1982) Vibrational spectroscopy of the electrode solution interface .3. Use of fourier-transform spectroscopy for observing double-layer reorganization. J Electroanal Chem 140(1):211–216CrossRef Pons S, Davidson T, Bewick A (1982) Vibrational spectroscopy of the electrode solution interface .3. Use of fourier-transform spectroscopy for observing double-layer reorganization. J Electroanal Chem 140(1):211–216CrossRef
90.
go back to reference Li JT, Zhou ZY, Broadwell I, Sun SG (2012) In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. Acc Chem Res 45(4):485–494CrossRef Li JT, Zhou ZY, Broadwell I, Sun SG (2012) In-situ infrared spectroscopic studies of electrochemical energy conversion and storage. Acc Chem Res 45(4):485–494CrossRef
91.
go back to reference Iwasita T, Nart FC (1990) Bulk effects in external reflection ir spectroscopy- the interpretation of adsorption data for ionic species. J Electroanal Chem 295(1–2):215–224CrossRef Iwasita T, Nart FC (1990) Bulk effects in external reflection ir spectroscopy- the interpretation of adsorption data for ionic species. J Electroanal Chem 295(1–2):215–224CrossRef
92.
go back to reference Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55(4):271–340CrossRef Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55(4):271–340CrossRef
93.
go back to reference Bae IT, Scherson DA, Yeager EB (1990) Infrared spectroscopic determination of ph changes in diffusionally decoupled thin-layer electrochemical-cells. Anal Chem 62(1):45–49CrossRef Bae IT, Scherson DA, Yeager EB (1990) Infrared spectroscopic determination of ph changes in diffusionally decoupled thin-layer electrochemical-cells. Anal Chem 62(1):45–49CrossRef
94.
go back to reference Bae IT, Xing XK, Yeager EB, Scherson D (1989) Ionic transport effects in insitu fourier-transform infrared reflection absorption-spectroscopy. Anal Chem 61(10):1164–1167CrossRef Bae IT, Xing XK, Yeager EB, Scherson D (1989) Ionic transport effects in insitu fourier-transform infrared reflection absorption-spectroscopy. Anal Chem 61(10):1164–1167CrossRef
95.
go back to reference Osawa M (1997) Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70(12):2861–2880CrossRef Osawa M (1997) Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70(12):2861–2880CrossRef
96.
go back to reference Miki A, Ye S, Osawa M (2002) Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem Commun 0(14):1500–1501 Miki A, Ye S, Osawa M (2002) Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem Commun 0(14):1500–1501
97.
go back to reference Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated fourier-transform infrared reflection absorption-spectroscopy to the study of carbon-monoxide adsorption and oxidation on a smooth platinum-electrode. J Phys Chem 88(7):1275–1277CrossRef Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated fourier-transform infrared reflection absorption-spectroscopy to the study of carbon-monoxide adsorption and oxidation on a smooth platinum-electrode. J Phys Chem 88(7):1275–1277CrossRef
98.
go back to reference Golden WG, Saperstein DD, Severson MW, Overend J (1984) Infrared reflection absorption-spectroscopy of surface species – a comparison of fourier-transform and dispersion methods. J Phys Chem 88(3):574–580CrossRef Golden WG, Saperstein DD, Severson MW, Overend J (1984) Infrared reflection absorption-spectroscopy of surface species – a comparison of fourier-transform and dispersion methods. J Phys Chem 88(3):574–580CrossRef
99.
go back to reference Golden WG, Dunn DS, Overend J (1981) A method for measuring infrared reflection-absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations. J Catal 71(2):395–404CrossRef Golden WG, Dunn DS, Overend J (1981) A method for measuring infrared reflection-absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations. J Catal 71(2):395–404CrossRef
100.
go back to reference Kunimatsu K, Kita H (1987) Infrared spectroscopic study of methanol and formic-acid adsorbates on a platinum-electrode .2. Role of the linear co(a) derived from methanol and formic-acid in the electrocatalytic oxidation of ch3oh and hcooh. J Electroanal Chem 218(1–2):155–172CrossRef Kunimatsu K, Kita H (1987) Infrared spectroscopic study of methanol and formic-acid adsorbates on a platinum-electrode .2. Role of the linear co(a) derived from methanol and formic-acid in the electrocatalytic oxidation of ch3oh and hcooh. J Electroanal Chem 218(1–2):155–172CrossRef
101.
go back to reference Christensen P, Hamnett A (2000) In-situ techniques in electrochemistry – ellipsometry and FTIR. Electrochim Acta 45(15–16):2443–2459CrossRef Christensen P, Hamnett A (2000) In-situ techniques in electrochemistry – ellipsometry and FTIR. Electrochim Acta 45(15–16):2443–2459CrossRef
102.
go back to reference Osawa M, Yoshii K (1997) In situ and real-time surface-enhanced infrared study of electrochemical reactions. Appl Spectrosc 51(4):512–518CrossRef Osawa M, Yoshii K (1997) In situ and real-time surface-enhanced infrared study of electrochemical reactions. Appl Spectrosc 51(4):512–518CrossRef
103.
go back to reference Osawa M, Yoshii K, Ataka K, Yotsuyanagi T (1994) Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-total-reflection spectroscopy. Langmuir 10(3):640–642CrossRef Osawa M, Yoshii K, Ataka K, Yotsuyanagi T (1994) Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-total-reflection spectroscopy. Langmuir 10(3):640–642CrossRef
104.
go back to reference Noda H, Wan LJ, Osawa M (2001) Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution: a combined surface-enhanced infrared and STM study. Phys Chem Chem Phys 3(16):3336–3342CrossRef Noda H, Wan LJ, Osawa M (2001) Dynamics of adsorption and phase formation of p-nitrobenzoic acid at Au(111) surface in solution: a combined surface-enhanced infrared and STM study. Phys Chem Chem Phys 3(16):3336–3342CrossRef
105.
go back to reference Wandlowski T, Ataka K, Pronkin S, Diesing D (2004) Surface enhanced infrared spectroscopy – Au(1 1 1-20 nm)/sulphuric acid – new aspects and challenges. Electrochim Acta 49(8):1233–1247CrossRef Wandlowski T, Ataka K, Pronkin S, Diesing D (2004) Surface enhanced infrared spectroscopy – Au(1 1 1-20 nm)/sulphuric acid – new aspects and challenges. Electrochim Acta 49(8):1233–1247CrossRef
106.
go back to reference Nichols RJ, Bewick A (1988) Sniftirs with a flow cell – the identification of the reaction intermediates in methanol oxidation at pt anodes. Electrochim Acta 33(11):1691–1694CrossRef Nichols RJ, Bewick A (1988) Sniftirs with a flow cell – the identification of the reaction intermediates in methanol oxidation at pt anodes. Electrochim Acta 33(11):1691–1694CrossRef
107.
go back to reference Roth JD, Weaver MJ (1991) The electrooxidation of carbon-monoxide on platinum as examined by surface infrared-spectroscopy under forced hydrodynamic conditions. J Electroanal Chem 307(1–2):119–137CrossRef Roth JD, Weaver MJ (1991) The electrooxidation of carbon-monoxide on platinum as examined by surface infrared-spectroscopy under forced hydrodynamic conditions. J Electroanal Chem 307(1–2):119–137CrossRef
108.
go back to reference Bellec V, De Backer MG, Levillain E, Sauvage FX et al (2001) In situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ. Electrochem Commun 3(9):483–488CrossRef Bellec V, De Backer MG, Levillain E, Sauvage FX et al (2001) In situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ. Electrochem Commun 3(9):483–488CrossRef
109.
go back to reference Sun SG, Lin Y (1994) Kinetic aspects of oxidation of isopropanol on pt electrodes investigated by in-situ time-resolved ftir spectroscopy. J Electroanal Chem 375(1–2):401–404CrossRef Sun SG, Lin Y (1994) Kinetic aspects of oxidation of isopropanol on pt electrodes investigated by in-situ time-resolved ftir spectroscopy. J Electroanal Chem 375(1–2):401–404CrossRef
110.
go back to reference Zhou ZY, Lin SC, Chen SP, Sun SG (2005) In situ step-scan time-resolved microscope FTIR spectroscopy working with a thin-layer cell. Electrochem Commun 7(5):490–495CrossRef Zhou ZY, Lin SC, Chen SP, Sun SG (2005) In situ step-scan time-resolved microscope FTIR spectroscopy working with a thin-layer cell. Electrochem Commun 7(5):490–495CrossRef
111.
go back to reference Kunimatsu K, Yoda T, Tryk DA, Uchida H et al (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629CrossRef Kunimatsu K, Yoda T, Tryk DA, Uchida H et al (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629CrossRef
112.
go back to reference Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437(1–2):233–240CrossRef Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437(1–2):233–240CrossRef
113.
go back to reference Tian N, Zhou ZY, Yu NF, Wang LY et al (2010) Direct electrodeposition of Tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc 132(22):7580CrossRef Tian N, Zhou ZY, Yu NF, Wang LY et al (2010) Direct electrodeposition of Tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc 132(22):7580CrossRef
114.
go back to reference Tian N, Zhou ZY, Sun SG, Ding Y et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735CrossRef Tian N, Zhou ZY, Sun SG, Ding Y et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735CrossRef
115.
go back to reference Zhou ZY, Huang ZZ, Chen DJ, Wang Q et al (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol Electrooxidation. Angew Chem Int Ed 49(2):411–414CrossRef Zhou ZY, Huang ZZ, Chen DJ, Wang Q et al (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol Electrooxidation. Angew Chem Int Ed 49(2):411–414CrossRef
116.
go back to reference Silva LC, Maia G, Passos RR, de Souza EA et al (2013) Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochim Acta 112:612–619CrossRef Silva LC, Maia G, Passos RR, de Souza EA et al (2013) Analysis of the selectivity of PtRh/C and PtRhSn/C to the formation of CO2 during ethanol electrooxidation. Electrochim Acta 112:612–619CrossRef
117.
go back to reference Soares LA, Morais C, Napporn TW, Kokoh KB et al (2016) Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J Power Sources 315:47–55CrossRef Soares LA, Morais C, Napporn TW, Kokoh KB et al (2016) Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J Power Sources 315:47–55CrossRef
118.
go back to reference Almeida TS, Palma LM, Morais C, Kokoh KB et al (2013) Effect of adding a third metal to carbon-supported PtSn-based Nanocatalysts for direct ethanol fuel cell in acidic medium. J Electrochem Soc 160(9):F965–F971CrossRef Almeida TS, Palma LM, Morais C, Kokoh KB et al (2013) Effect of adding a third metal to carbon-supported PtSn-based Nanocatalysts for direct ethanol fuel cell in acidic medium. J Electrochem Soc 160(9):F965–F971CrossRef
119.
go back to reference Yang YY, Ren J, Li QX, Zhou ZY et al (2014) Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal 4(3):798–803CrossRef Yang YY, Ren J, Li QX, Zhou ZY et al (2014) Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal 4(3):798–803CrossRef
120.
go back to reference Beyhan S, Uosaki K, Feliu JM, Herrero E (2013) Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline. J Electroanal Chem 707:89–94CrossRef Beyhan S, Uosaki K, Feliu JM, Herrero E (2013) Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline. J Electroanal Chem 707:89–94CrossRef
121.
go back to reference Pech-Rodriguez WJ, Gonzalez-Quijano D, Vargas-Gutierrez G, Morais C et al (2017) Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl Catal B Environ 203:654–662CrossRef Pech-Rodriguez WJ, Gonzalez-Quijano D, Vargas-Gutierrez G, Morais C et al (2017) Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl Catal B Environ 203:654–662CrossRef
122.
go back to reference Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ et al (2016) Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: a combined in situ IR spectroscopy and online mass spectrometry study. J Electroanal Chem 763:116–124CrossRef Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ et al (2016) Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: a combined in situ IR spectroscopy and online mass spectrometry study. J Electroanal Chem 763:116–124CrossRef
123.
go back to reference Delpeuch AB, Maillard F, Chatenet M, Soudant P et al (2016) Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. Appl Catal B Environ 181:672–680CrossRef Delpeuch AB, Maillard F, Chatenet M, Soudant P et al (2016) Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. Appl Catal B Environ 181:672–680CrossRef
124.
go back to reference Zhou ZY, Wang QA, Lin JL, Tian N et al (2010) In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta 55(27):7995–7999CrossRef Zhou ZY, Wang QA, Lin JL, Tian N et al (2010) In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochim Acta 55(27):7995–7999CrossRef
125.
go back to reference Ren J, Yang YY, Zhang BW, Tian N et al (2013) H-D kinetic isotope effects of alcohol electrooxidation on Au, Pd and Pt electrodes in alkaline solutions. Electrochem Commun 37:49–52CrossRef Ren J, Yang YY, Zhang BW, Tian N et al (2013) H-D kinetic isotope effects of alcohol electrooxidation on Au, Pd and Pt electrodes in alkaline solutions. Electrochem Commun 37:49–52CrossRef
126.
go back to reference Allen JB, Faulkner LR (2001) Electrochemical methods: fundamuntals and applications, 2nd edn. Wiley, New York, p 850 Allen JB, Faulkner LR (2001) Electrochemical methods: fundamuntals and applications, 2nd edn. Wiley, New York, p 850
127.
go back to reference Scholz F (2010) Electroanalytical methods: guide to experiments and applications. Springer, Berlin/Heidelberg, p 388CrossRef Scholz F (2010) Electroanalytical methods: guide to experiments and applications. Springer, Berlin/Heidelberg, p 388CrossRef
128.
go back to reference Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3(7):1176–1185CrossRef Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3(7):1176–1185CrossRef
129.
go back to reference Kwon Y, Koper MTM (2010) Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal Chem 82(13):5420–5424CrossRef Kwon Y, Koper MTM (2010) Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal Chem 82(13):5420–5424CrossRef
130.
go back to reference Gomes J, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2(2):96–105CrossRef Gomes J, Tremiliosi-Filho G (2011) Spectroscopic studies of the glycerol electro-oxidation on polycrystalline au and Pt surfaces in acidic and alkaline media. Electrocatalysis 2(2):96–105CrossRef
131.
go back to reference Jeffery DZ, Camara GA (2010) The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem Commun 12(8):1129–1132CrossRef Jeffery DZ, Camara GA (2010) The formation of carbon dioxide during glycerol electrooxidation in alkaline media: first spectroscopic evidences. Electrochem Commun 12(8):1129–1132CrossRef
132.
go back to reference Kwon Y, Birdja Y, Spanos I, Rodriguez P et al (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2(5):759–764CrossRef Kwon Y, Birdja Y, Spanos I, Rodriguez P et al (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2(5):759–764CrossRef
133.
go back to reference Simões M, Baranton S, Coutanceau C (2011) Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl Catal B Environ 110:40–49CrossRef Simões M, Baranton S, Coutanceau C (2011) Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl Catal B Environ 110:40–49CrossRef
134.
go back to reference Simões M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol. ChemSusChem 5(11):2106–2124CrossRef Simões M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol. ChemSusChem 5(11):2106–2124CrossRef
135.
go back to reference Fernández PS, Martins ME, Camara GA (2012) New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim Acta 66:180–187CrossRef Fernández PS, Martins ME, Camara GA (2012) New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim Acta 66:180–187CrossRef
136.
go back to reference Holade Y, Morais C, Servat K, Napporn TW et al (2013) Toward the electrochemical valorization of glycerol: fourier transform infrared spectroscopic and chromatographic studies. ACS Catal 3(10):2403–2411CrossRef Holade Y, Morais C, Servat K, Napporn TW et al (2013) Toward the electrochemical valorization of glycerol: fourier transform infrared spectroscopic and chromatographic studies. ACS Catal 3(10):2403–2411CrossRef
137.
go back to reference Simões M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93(3–4):354–362CrossRef Simões M, Baranton S, Coutanceau C (2010) Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl Catal B Environ 93(3–4):354–362CrossRef
138.
go back to reference Sun S-G (1998) Studying electrocatalytic oxidation of small organic molecules with in-situ infra spectroscopy. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, Inc., New York, (USA), pp 243–290 Sun S-G (1998) Studying electrocatalytic oxidation of small organic molecules with in-situ infra spectroscopy. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, Inc., New York, (USA), pp 243–290
139.
go back to reference Demarconnay L, Brimaud S, Coutanceau C, Léger JM (2007) Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J Electroanal Chem 601(1–2):169–180CrossRef Demarconnay L, Brimaud S, Coutanceau C, Léger JM (2007) Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts. J Electroanal Chem 601(1–2):169–180CrossRef
140.
go back to reference Palma LM, Almeida TS, Morais C, Napporn TW et al (2017) Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials. ChemElectroChem 4(1):39–45CrossRef Palma LM, Almeida TS, Morais C, Napporn TW et al (2017) Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials. ChemElectroChem 4(1):39–45CrossRef
141.
go back to reference Innocent B, Pasquier D, Ropital F, Hahn F et al (2010) FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium. Appl Catal B Environ 94(3–4):219–224CrossRef Innocent B, Pasquier D, Ropital F, Hahn F et al (2010) FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium. Appl Catal B Environ 94(3–4):219–224CrossRef
142.
go back to reference Eneau-Innocent B, Pasquier D, Ropital F, Leger JM et al (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B Environ 98(1–2):65–71CrossRef Eneau-Innocent B, Pasquier D, Ropital F, Leger JM et al (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B Environ 98(1–2):65–71CrossRef
143.
go back to reference Xiang DM, Magana D, Dyer RB (2014) CO2 reduction catalyzed by Mercaptopteridine on glassy carbon. J Am Chem Soc 136(40):14007–14010CrossRef Xiang DM, Magana D, Dyer RB (2014) CO2 reduction catalyzed by Mercaptopteridine on glassy carbon. J Am Chem Soc 136(40):14007–14010CrossRef
144.
go back to reference Firet NJ, Smith WA (2017) Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal 7(1):606–612CrossRef Firet NJ, Smith WA (2017) Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal 7(1):606–612CrossRef
145.
go back to reference Chang SC, Weaver MJ (1990) Coverage-dependent and potential-dependent binding geometries of carbon-monoxide at ordered low-index platinum aqueous and rhodium aqueous interfaces – comparisons with adsorption in corresponding metal vacuum environments. Surf Sci 238(1–3):142–162CrossRef Chang SC, Weaver MJ (1990) Coverage-dependent and potential-dependent binding geometries of carbon-monoxide at ordered low-index platinum aqueous and rhodium aqueous interfaces – comparisons with adsorption in corresponding metal vacuum environments. Surf Sci 238(1–3):142–162CrossRef
146.
go back to reference Chang SC, Weaver MJ (1991) Insitu infrared-spectroscopy at single-crystal metal-electrodes – an emerging link between electrochemical and ultrahigh-vacuum surface science. J Phys Chem 95(14):5391–5400CrossRef Chang SC, Weaver MJ (1991) Insitu infrared-spectroscopy at single-crystal metal-electrodes – an emerging link between electrochemical and ultrahigh-vacuum surface science. J Phys Chem 95(14):5391–5400CrossRef
147.
go back to reference Yajima T, Uchida H, Watanabe M (2004) In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B 108(8):2654–2659CrossRef Yajima T, Uchida H, Watanabe M (2004) In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy. J Phys Chem B 108(8):2654–2659CrossRef
148.
go back to reference Ma J, Habrioux A, Morais C, Alonso-Vante N (2014) Electronic modification of Pt via Ti and se as tolerant cathodes in air-breathing methanol microfluidic fuel cells. Phys Chem Chem Phys 16(27):13820–13826CrossRef Ma J, Habrioux A, Morais C, Alonso-Vante N (2014) Electronic modification of Pt via Ti and se as tolerant cathodes in air-breathing methanol microfluidic fuel cells. Phys Chem Chem Phys 16(27):13820–13826CrossRef
149.
go back to reference Ma J, Habrioux A, Morais C, Lewera A et al (2013) Spectroelectrochemical probing of the strong interaction between platinum nanoparticles and graphitic domains of carbon. ACS Catal 3(9):1940–1950CrossRef Ma J, Habrioux A, Morais C, Lewera A et al (2013) Spectroelectrochemical probing of the strong interaction between platinum nanoparticles and graphitic domains of carbon. ACS Catal 3(9):1940–1950CrossRef
150.
go back to reference Abidat I, Morais C, Pronier S, Guignard N et al (2017) Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles. Carbon 111:849–858CrossRef Abidat I, Morais C, Pronier S, Guignard N et al (2017) Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles. Carbon 111:849–858CrossRef
151.
go back to reference Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93(3):793–794CrossRef Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93(3):793–794CrossRef
152.
go back to reference Wolter O, Heitbaum J (1984) Differential electrochemical mass spectroscopy (DEMS) – a new method for the study of electrode processes. Ber Bunsenges Phys Chem 88(1):2–6CrossRef Wolter O, Heitbaum J (1984) Differential electrochemical mass spectroscopy (DEMS) – a new method for the study of electrode processes. Ber Bunsenges Phys Chem 88(1):2–6CrossRef
153.
go back to reference Baltruschat H (2004) Differential electrochemical mass spectrometry. J Am Soc Mass Spectrom 15(12):1693–1706CrossRef Baltruschat H (2004) Differential electrochemical mass spectrometry. J Am Soc Mass Spectrom 15(12):1693–1706CrossRef
154.
go back to reference Sreekanth N, Phani KL (2014) Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chem Commun 50(76):11143–11146CrossRef Sreekanth N, Phani KL (2014) Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chem Commun 50(76):11143–11146CrossRef
155.
go back to reference Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234CrossRef Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234CrossRef
156.
go back to reference Koga O, Hori Y (1993) Reduction of adsorbed co on a Ni electrode in connection with the electrochemical reduction of CO2. Electrochim Acta 38(10):1391–1394CrossRef Koga O, Hori Y (1993) Reduction of adsorbed co on a Ni electrode in connection with the electrochemical reduction of CO2. Electrochim Acta 38(10):1391–1394CrossRef
157.
go back to reference Li W (2010) Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. In: Advances in CO2 conversion and utilization, vol 1056. American Chemical Society, Washington DC, pp 55–76CrossRef Li W (2010) Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. In: Advances in CO2 conversion and utilization, vol 1056. American Chemical Society, Washington DC, pp 55–76CrossRef
158.
go back to reference Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low Overpotential on oxide-derived au nanoparticles. J Am Chem Soc 134(49):19969–19972CrossRef Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low Overpotential on oxide-derived au nanoparticles. J Am Chem Soc 134(49):19969–19972CrossRef
159.
go back to reference Hansen HA, Varley JB, Peterson AA, Nørskov JK (2013) Understanding trends in the Electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 4(3):388–392CrossRef Hansen HA, Varley JB, Peterson AA, Nørskov JK (2013) Understanding trends in the Electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett 4(3):388–392CrossRef
160.
go back to reference Baturina OA, Lu Q, Padilla MA, Xin L et al (2014) CO2 electroreduction to hydrocarbons on carbon-supported cu nanoparticles. ACS Catal 4(10):3682–3695CrossRef Baturina OA, Lu Q, Padilla MA, Xin L et al (2014) CO2 electroreduction to hydrocarbons on carbon-supported cu nanoparticles. ACS Catal 4(10):3682–3695CrossRef
161.
go back to reference Ren D, Deng Y, Handoko AD, Chen CS et al (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5(5):2814–2821CrossRef Ren D, Deng Y, Handoko AD, Chen CS et al (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5(5):2814–2821CrossRef
162.
go back to reference Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13CrossRef Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13CrossRef
163.
go back to reference Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to Formate. J Am Chem Soc 136(5):1734–1737CrossRef Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to Formate. J Am Chem Soc 136(5):1734–1737CrossRef
164.
go back to reference Liu Z, Masel RI, Chen Q, Kutz R et al (2016) Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J CO2 Util 15:50–56CrossRef Liu Z, Masel RI, Chen Q, Kutz R et al (2016) Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J CO2 Util 15:50–56CrossRef
165.
go back to reference Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver Electrocatalysts. Angew Chem Int Ed 55(33):9748–9752CrossRef Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver Electrocatalysts. Angew Chem Int Ed 55(33):9748–9752CrossRef
166.
go back to reference Camilo MR, Silva WO, Lima FHB (2017) Investigation of electrocatalysts for selective reduction of CO2 to CO: monitoring the reaction products by on line mass spectrometry and gas chromatography. J Braz Chem Soc. 28(9):1803–1815 Camilo MR, Silva WO, Lima FHB (2017) Investigation of electrocatalysts for selective reduction of CO2 to CO: monitoring the reaction products by on line mass spectrometry and gas chromatography. J Braz Chem Soc. 28(9):1803–1815
167.
go back to reference Sarkar A, Manthiram A (2010) Synthesis of Pt@Cu Core−Shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 114(10):4725–4732CrossRef Sarkar A, Manthiram A (2010) Synthesis of Pt@Cu Core−Shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 114(10):4725–4732CrossRef
168.
go back to reference Zhang J, Lima FHB, Shao MH, Sasaki K et al (2005) Platinum monolayer on nonnoble metal−Noble metal Core−Shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704CrossRef Zhang J, Lima FHB, Shao MH, Sasaki K et al (2005) Platinum monolayer on nonnoble metal−Noble metal Core−Shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704CrossRef
169.
go back to reference Kiros Y (1996) Electrocatalytic properties of Co, Pt, and Pt-Co on carbon for the reduction of oxygen in alkaline fuel cells. J Electrochem Soc 143(7):2152–2157CrossRef Kiros Y (1996) Electrocatalytic properties of Co, Pt, and Pt-Co on carbon for the reduction of oxygen in alkaline fuel cells. J Electrochem Soc 143(7):2152–2157CrossRef
170.
go back to reference Kedzierzawski P, Augustynski J (1994) Poisoning and activation of the gold cathode during Electroreduction of CO2. J Electrochem Soc 141(5):L58–L60CrossRef Kedzierzawski P, Augustynski J (1994) Poisoning and activation of the gold cathode during Electroreduction of CO2. J Electrochem Soc 141(5):L58–L60CrossRef
171.
go back to reference Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154(2):351–359CrossRef Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154(2):351–359CrossRef
172.
go back to reference Sato AG, Silva GCD, Paganin VA, Biancolli ALG et al (2015) New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles. J Power Sources 294:569–573CrossRef Sato AG, Silva GCD, Paganin VA, Biancolli ALG et al (2015) New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles. J Power Sources 294:569–573CrossRef
173.
go back to reference Lai SCS, Kleijn SEF, Öztürk FTZ, van Rees Vellinga VC et al (2010) Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal Today 154(1–2):92–104CrossRef Lai SCS, Kleijn SEF, Öztürk FTZ, van Rees Vellinga VC et al (2010) Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal Today 154(1–2):92–104CrossRef
174.
go back to reference Queiroz AC, Silva WO, Rodrigues IA, Lima FHB (2014) Identification of bimetallic electrocatalysts for ethanol and acetaldehyde oxidation: probing C2-pathway and activity for hydrogen oxidation for indirect hydrogen fuel cells. Appl Catal B Environ 160–161:423–435CrossRef Queiroz AC, Silva WO, Rodrigues IA, Lima FHB (2014) Identification of bimetallic electrocatalysts for ethanol and acetaldehyde oxidation: probing C2-pathway and activity for hydrogen oxidation for indirect hydrogen fuel cells. Appl Catal B Environ 160–161:423–435CrossRef
175.
go back to reference Sao-Joao S, Giorgio S, Penisson JM, Chapon C et al (2005) Structure and deformations of Pd−Ni Core−Shell nanoparticles. J Phys Chem B 109(1):342–347CrossRef Sao-Joao S, Giorgio S, Penisson JM, Chapon C et al (2005) Structure and deformations of Pd−Ni Core−Shell nanoparticles. J Phys Chem B 109(1):342–347CrossRef
176.
go back to reference Kowal A, Li M, Shao M, Sasaki K et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330CrossRef Kowal A, Li M, Shao M, Sasaki K et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330CrossRef
Metadata
Title
Tools and Electrochemical In Situ and On-Line Characterization Techniques for Nanomaterials
Authors
Têko W. Napporn
Laetitia Dubau
Claudia Morais
Mariana R. Camilo
Julien Durst
Fabio H. B. Lima
Frédéric Maillard
K. Boniface Kokoh
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56322-9_11

Premium Partners