Skip to main content
Top

2018 | OriginalPaper | Chapter

Topological Correction of Infant Cortical Surfaces Using Anatomically Constrained U-Net

Authors : Liang Sun, Daoqiang Zhang, Li Wang, Wei Shao, Zengsi Chen, Weili Lin, Dinggang Shen, Gang Li

Published in: Machine Learning in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reconstruction of accurate cortical surfaces with minimal topological errors (i.e., handles and holes) from infant brain MR images is important in early brain development studies. However, infant brain MR images usually exhibit extremely low tissue contrast (especially from 3 to 9 months of age) and dynamic imaging appearance patterns. Thus, it is inevitable to have large amounts of topological errors in the infant brain tissue segmentation results, thus leading to inaccurate surface reconstruction. To address these issues, inspired by recent advances in deep learning methods, we propose an anatomically constrained U-Net method for topological correction of infant cortical surfaces. Specifically, in our method, we first extract candidate voxels with potential topological errors, by leveraging a topology-preserving level set method. Then, we propose a U-Net with anatomical constraints to correct those located candidate voxels. Due to the fact that infant cortical surfaces often contain large handles or holes, it is difficult to completely correct all errors using one-shot correction. Therefore, we further gather these two steps into an iterative framework to correct large topological errors gradually. To our knowledge, this is the first work introducing deep learning for infant cortical topological correction. We compare our method with the state-of-the-art method on infant cortical topology and show the superior performance of our method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, G., et al.: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cortex 23(11), 2724–2733 (2012)CrossRef Li, G., et al.: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cortex 23(11), 2724–2733 (2012)CrossRef
2.
go back to reference Paus, T., Collins, D., Evans, A., Leonard, G., Pike, B., Zijdenbos, A.: Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54(3), 255–266 (2001)CrossRef Paus, T., Collins, D., Evans, A., Leonard, G., Pike, B., Zijdenbos, A.: Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54(3), 255–266 (2001)CrossRef
3.
go back to reference Shattuck, D.W., Leahy, R.M.: Automated graph-based analysis and correction of cortical volume topology. IEEE TMI 20(11), 1167–1177 (2001) Shattuck, D.W., Leahy, R.M.: Automated graph-based analysis and correction of cortical volume topology. IEEE TMI 20(11), 1167–1177 (2001)
4.
go back to reference Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE TMI 20(1), 70–80 (2001) Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE TMI 20(1), 70–80 (2001)
5.
go back to reference Yotter, R.A., Dahnke, R., Thompson, P.M., Gaser, C.: Topological correction of brain surface meshes using spherical harmonics. Hum. Brain Mapp. 32(7), 1109–1124 (2011)CrossRef Yotter, R.A., Dahnke, R., Thompson, P.M., Gaser, C.: Topological correction of brain surface meshes using spherical harmonics. Hum. Brain Mapp. 32(7), 1109–1124 (2011)CrossRef
6.
go back to reference Shi, Y., Lai, R., Toga, A.W.: Cortical surface reconstruction via unified reeb analysis of geometric and topological outliers in magnetic resonance images. IEEE TMI 32(3), 511–530 (2013) Shi, Y., Lai, R., Toga, A.W.: Cortical surface reconstruction via unified reeb analysis of geometric and topological outliers in magnetic resonance images. IEEE TMI 32(3), 511–530 (2013)
7.
go back to reference Ségonne, F., Grimson, E., Fischl, B.: A genetic algorithm for the topology correction of cortical surfaces. In: Biennial International Conference on Information Processing in Medical Imaging, Springer (2005) 393–405 Ségonne, F., Grimson, E., Fischl, B.: A genetic algorithm for the topology correction of cortical surfaces. In: Biennial International Conference on Information Processing in Medical Imaging, Springer (2005) 393–405
10.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49 Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49
11.
go back to reference Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE TPAMI 25(6), 755–768 (2003)CrossRef Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE TPAMI 25(6), 755–768 (2003)CrossRef
12.
go back to reference Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)CrossRef Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)CrossRef
Metadata
Title
Topological Correction of Infant Cortical Surfaces Using Anatomically Constrained U-Net
Authors
Liang Sun
Daoqiang Zhang
Li Wang
Wei Shao
Zengsi Chen
Weili Lin
Dinggang Shen
Gang Li
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00919-9_15

Premium Partner