Skip to main content
Top
Published in: Journal of Failure Analysis and Prevention 2/2018

01-04-2018 | Technical Article---Peer-Reviewed

Total Life Estimation of a Compressor Blade with Corrosion Pitting, SCC and Fatigue Cracking

Authors: O. Pedram, E. Poursaeidi

Published in: Journal of Failure Analysis and Prevention | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since compressors have components rotating at high speed, the most common cause of failure in compressors is their high cycle fatigue. In the present study, one of the rotating blades on the first row of an axial flow compressor was prematurely fractured. The crack position and direction were determined, using nondestructive tests. The results indicated that fatigue cracking initiated at two corrosion pits on the surface of the pressure side of the blade in response to corrosive compounds in the site atmosphere. The total life of the blade, from corrosion pit initiation to unstable fatigue crack growth, was calculated. The blade life had three stages: pit initiation and pit growth, pit transition to initial crack and stable crack growth reaching a critical value where the final fracture occurred. Pit growth and its transition to initial cracking were described. The time an equivalent pit requires to reach initial fatigue cracking was subsequently calculated. The number of cycles was calculated via two methods until initial cracking reached unstable growth. The first calculation was performed, using ZENCRACK fracture mechanics code. These results demonstrated that the rate of fatigue crack growth was at first slow and stable. After a period of time, the stress intensity factor reached a critical value where the crack began to propagate unstably. A MATLAB code was written based on Paris model as the second method for estimating fatigue life. The results obtained from drawing a comparison between these methods revealed that ZENCRACK crack shape simulation was in agreement with the fatigue beach marks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Rama Rao, B.K. Dutta, Vibration analysis for detecting failure of compressor blade. Eng. Fail. Anal. 25, 211–218 (2012)CrossRef A. Rama Rao, B.K. Dutta, Vibration analysis for detecting failure of compressor blade. Eng. Fail. Anal. 25, 211–218 (2012)CrossRef
2.
go back to reference J. Tian, X. Liu, S. Chen, Fracture analysis on compressor blades. Int. J. Fatigue 13(4), 333–336 (1991)CrossRef J. Tian, X. Liu, S. Chen, Fracture analysis on compressor blades. Int. J. Fatigue 13(4), 333–336 (1991)CrossRef
3.
go back to reference N.S. Xi, P.D. Zhong, H.Q. Huang, H. Yan, C.H. Tao, Failure investigation of blade and disk in first stage compressor. Eng. Fail. Anal. 7(6), 385–392 (2000)CrossRef N.S. Xi, P.D. Zhong, H.Q. Huang, H. Yan, C.H. Tao, Failure investigation of blade and disk in first stage compressor. Eng. Fail. Anal. 7(6), 385–392 (2000)CrossRef
4.
go back to reference E. Poursaeidi, A. Babaei, M.R. Mohammadi Arhani, M. Arablu, Effects of natural frequencies on the failure of R1 compressor blades. Eng. Fail. Anal. 25, 304–315 (2012)CrossRef E. Poursaeidi, A. Babaei, M.R. Mohammadi Arhani, M. Arablu, Effects of natural frequencies on the failure of R1 compressor blades. Eng. Fail. Anal. 25, 304–315 (2012)CrossRef
5.
go back to reference E. Poursaeidi, A. Babaei, F. Behrouzshad, M.R. Mohammadi Arhani, Failure analysis of an axial compressor first row rotating blades. Eng. Fail. Anal. 28, 25–33 (2013)CrossRef E. Poursaeidi, A. Babaei, F. Behrouzshad, M.R. Mohammadi Arhani, Failure analysis of an axial compressor first row rotating blades. Eng. Fail. Anal. 28, 25–33 (2013)CrossRef
6.
go back to reference R. Derakhshandeh-Haghighi, Metallurgical analysis and simulation of a service-fractured compressor blade made of ASTM S45000 alloy. J. Fail. Anal. Prev. 17(3), 522–528 (2017)CrossRef R. Derakhshandeh-Haghighi, Metallurgical analysis and simulation of a service-fractured compressor blade made of ASTM S45000 alloy. J. Fail. Anal. Prev. 17(3), 522–528 (2017)CrossRef
7.
go back to reference A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad, N. Nourbakhshnia, M. Mosaddeghfar, Failure analysis of Ti6Al4 V gas turbine compressor blades. Eng. Fail. Anal. 15(8), 1052–1064 (2008)CrossRef A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad, N. Nourbakhshnia, M. Mosaddeghfar, Failure analysis of Ti6Al4 V gas turbine compressor blades. Eng. Fail. Anal. 15(8), 1052–1064 (2008)CrossRef
8.
go back to reference V. Infante, J.M. Silva, M. de Freitas, L. Reis, Failures analysis of compressor blades of aeroengines due to service. Eng. Fail. Anal. 16(4), 1118–1125 (2009)CrossRef V. Infante, J.M. Silva, M. de Freitas, L. Reis, Failures analysis of compressor blades of aeroengines due to service. Eng. Fail. Anal. 16(4), 1118–1125 (2009)CrossRef
9.
go back to reference L. Witek, Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Eng. Fail. Anal. 18(4), 1223–1232 (2011)CrossRef L. Witek, Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Eng. Fail. Anal. 18(4), 1223–1232 (2011)CrossRef
10.
go back to reference E. Poursaeidi, H. Bakhtiari, Fatigue crack growth simulation in a first stage of compressor blade. Eng. Fail. Anal. 45, 314–325 (2014)CrossRef E. Poursaeidi, H. Bakhtiari, Fatigue crack growth simulation in a first stage of compressor blade. Eng. Fail. Anal. 45, 314–325 (2014)CrossRef
11.
go back to reference E. Poursaeidi, M. Sanaieei, H. Bakhtyari, Life estimate of a compressor blade through fractography. Int. J. Eng. Trans. A Basics 26(4), 393 (2012) E. Poursaeidi, M. Sanaieei, H. Bakhtyari, Life estimate of a compressor blade through fractography. Int. J. Eng. Trans. A Basics 26(4), 393 (2012)
12.
go back to reference E. Silveira, G. Atxaga, A.M. Irisarri, Failure analysis of a set of compressor blades. Eng. Fail. Anal. 15(6), 666–674 (2008)CrossRef E. Silveira, G. Atxaga, A.M. Irisarri, Failure analysis of a set of compressor blades. Eng. Fail. Anal. 15(6), 666–674 (2008)CrossRef
13.
go back to reference E. Poursaeidi, O. Pedram, An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade. Int. J. Eng. Trans. B Appl. 27(5), 785 (2013) E. Poursaeidi, O. Pedram, An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade. Int. J. Eng. Trans. B Appl. 27(5), 785 (2013)
14.
go back to reference M.R. Jahangiri, A.A. Fallah, A. Ghiasipour, Cement kiln dust induced corrosion fatigue damage of gas turbine compressor blades—a failure analysis. Mater. Des. 62, 288–295 (2014)CrossRef M.R. Jahangiri, A.A. Fallah, A. Ghiasipour, Cement kiln dust induced corrosion fatigue damage of gas turbine compressor blades—a failure analysis. Mater. Des. 62, 288–295 (2014)CrossRef
15.
go back to reference M. Cerit, K. Genel, S. Eksi, Numerical investigation on stress concentration of corrosion pit. Eng. Fail. Anal. 16(7), 2467–2472 (2009)CrossRef M. Cerit, K. Genel, S. Eksi, Numerical investigation on stress concentration of corrosion pit. Eng. Fail. Anal. 16(7), 2467–2472 (2009)CrossRef
16.
go back to reference N.J. Lourenço, M.L.A. Graça, L.A.L. Franco, O.M.M. Silva, Fatigue failure of a compressor blade. Eng. Fail. Anal. 15(8), 1150–1154 (2008)CrossRef N.J. Lourenço, M.L.A. Graça, L.A.L. Franco, O.M.M. Silva, Fatigue failure of a compressor blade. Eng. Fail. Anal. 15(8), 1150–1154 (2008)CrossRef
17.
go back to reference L. Hagn, Lifetime prediction for parts in corrosive environments, in Corrosion in Power Generating Equipment (1983), pp. 481–516 L. Hagn, Lifetime prediction for parts in corrosive environments, in Corrosion in Power Generating Equipment (1983), pp. 481–516
18.
go back to reference D. Colombo, M. Giglio, A methodology for automatic crack propagation modelling in planar and shell FE models. Eng. Fract. Mech. 73(4), 490–504 (2006)CrossRef D. Colombo, M. Giglio, A methodology for automatic crack propagation modelling in planar and shell FE models. Eng. Fract. Mech. 73(4), 490–504 (2006)CrossRef
19.
go back to reference M.R. Alam, K. Munaswamy, A.S.J. Swamidas, Experimental and numerical studies on dynamic crack growth in layered slate rock under wedge impact loads: part II–non-plane strain problem. Fatigue Fract. Eng. Mater. Struct. 30(10), 915–931 (2007)CrossRef M.R. Alam, K. Munaswamy, A.S.J. Swamidas, Experimental and numerical studies on dynamic crack growth in layered slate rock under wedge impact loads: part II–non-plane strain problem. Fatigue Fract. Eng. Mater. Struct. 30(10), 915–931 (2007)CrossRef
20.
go back to reference M. Schöllmann, M. Fulland, H.A. Richard, Development of a new software for adaptive crack growth simulations in 3D structures. Eng. Fract. Mech. 70(2), 249–268 (2003)CrossRef M. Schöllmann, M. Fulland, H.A. Richard, Development of a new software for adaptive crack growth simulations in 3D structures. Eng. Fract. Mech. 70(2), 249–268 (2003)CrossRef
21.
go back to reference FRANC3D, Concepts and Users Guide. V1. 14 (Cornell University, Ithaca, 1999) FRANC3D, Concepts and Users Guide. V1. 14 (Cornell University, Ithaca, 1999)
22.
go back to reference M. Schöllmann, H.A. Richard, FRANC/FAM—a software system for the prediction of crack propagation. J Struct Engng 26(1), 39–48 (1999) M. Schöllmann, H.A. Richard, FRANC/FAM—a software system for the prediction of crack propagation. J Struct Engng 26(1), 39–48 (1999)
23.
go back to reference D. Bremberg, G. Dhondt, Automatic crack-insertion for arbitrary crack growth. Eng. Fract. Mech. 75(3), 404–416 (2008)CrossRef D. Bremberg, G. Dhondt, Automatic crack-insertion for arbitrary crack growth. Eng. Fract. Mech. 75(3), 404–416 (2008)CrossRef
24.
go back to reference Zencrack User’s Manual. V7.5. Zentech International Limited, 2007 Zencrack User’s Manual. V7.5. Zentech International Limited, 2007
25.
go back to reference R. Branco, F.V. Antunes, J.D. Costa, Lynx: A user-friendly computer application for simulating fatigue growth of planar cracks using FEM. Comput. Appl. Eng. Educ. 22(3), 529–540 (2014)CrossRef R. Branco, F.V. Antunes, J.D. Costa, Lynx: A user-friendly computer application for simulating fatigue growth of planar cracks using FEM. Comput. Appl. Eng. Educ. 22(3), 529–540 (2014)CrossRef
26.
go back to reference E. Poursaeidi, A. Kavandi, K. Vaezi, M.R. Kalbasi, M.R. Mohammadi, Arhani, Fatigue crack growth prediction in a gas turbine casing. Eng. Fail. Anal. 44, 371–381 (2014)CrossRef E. Poursaeidi, A. Kavandi, K. Vaezi, M.R. Kalbasi, M.R. Mohammadi, Arhani, Fatigue crack growth prediction in a gas turbine casing. Eng. Fail. Anal. 44, 371–381 (2014)CrossRef
27.
go back to reference A.R. Maligno, S. Rajaratnam, S.B. Leen, E.J. Williams, A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques. Eng. Fract. Mech. 77(1), 94–111 (2010)CrossRef A.R. Maligno, S. Rajaratnam, S.B. Leen, E.J. Williams, A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques. Eng. Fract. Mech. 77(1), 94–111 (2010)CrossRef
28.
go back to reference M. Salari, A.R. Shahani, Kashani H. Moayeri, Fatigue crack growth analysis of a reinforced cylindrical shell under random loading. Fatigue Fract. Eng. Mater. Struct. 37, 1197–1210 (2014)CrossRef M. Salari, A.R. Shahani, Kashani H. Moayeri, Fatigue crack growth analysis of a reinforced cylindrical shell under random loading. Fatigue Fract. Eng. Mater. Struct. 37, 1197–1210 (2014)CrossRef
29.
go back to reference P.A. Schweitzer, Metallic Materials: Physical, Mechanical, and Corrosion Properties. V19 (CRC Press, Boca Raton, 2003)CrossRef P.A. Schweitzer, Metallic Materials: Physical, Mechanical, and Corrosion Properties. V19 (CRC Press, Boca Raton, 2003)CrossRef
30.
go back to reference A.C. Reardon (ed.), Metallurgy for the Non-Metallurgist (Almere, ASM International, 2011) A.C. Reardon (ed.), Metallurgy for the Non-Metallurgist (Almere, ASM International, 2011)
31.
go back to reference G. Stephani, Overview of stress corrosion cracking in stainless steel: electronic enclosures in extreme environmental conditions. DfR Solutions. www.dfrsolutions.com G. Stephani, Overview of stress corrosion cracking in stainless steel: electronic enclosures in extreme environmental conditions. DfR Solutions. www.​dfrsolutions.​com
32.
go back to reference W. Dietzel, Fracture mechanics approach to stress corrosion cracking, in Anales de Mecánica de la Fractura, vol. 18 (2001), pp. 1–7 W. Dietzel, Fracture mechanics approach to stress corrosion cracking, in Anales de Mecánica de la Fractura, vol. 18 (2001), pp. 1–7
33.
go back to reference C.S. Alloys, Alloys for Corrosive Environments. CRS Holdings Inc., vol. U.S.A. 7 03/2.5M, (2003) C.S. Alloys, Alloys for Corrosive Environments. CRS Holdings Inc., vol. U.S.A. 7 03/2.5M, (2003)
34.
go back to reference R. Cottis, Guides to Good Practice in Corrosion Control Stress Corrosion Cracking (National Physical Laboratory, Teddington, 2000) R. Cottis, Guides to Good Practice in Corrosion Control Stress Corrosion Cracking (National Physical Laboratory, Teddington, 2000)
35.
go back to reference D. Linden, in Long Term Operating Experience with Corrosion Control in Industrial Axial Flow Compressors. Proceedings of the Fortieth Turbomachinery Symposium 2011, Houston, Texas D. Linden, in Long Term Operating Experience with Corrosion Control in Industrial Axial Flow Compressors. Proceedings of the Fortieth Turbomachinery Symposium 2011, Houston, Texas
36.
go back to reference NASA Johnson Space Center, Southwest Research Institute, NASGRO Reference Manual V4.02. In: SwRI, editor (2002). p. 138 NASA Johnson Space Center, Southwest Research Institute, NASGRO Reference Manual V4.02. In: SwRI, editor (2002). p. 138
37.
go back to reference T.C. Lindley, P. McIntyre, P.J. Trant, Fatigue-crack initiation at corrosion pits. Met. Technol. 9(1), 135–142 (1982)CrossRef T.C. Lindley, P. McIntyre, P.J. Trant, Fatigue-crack initiation at corrosion pits. Met. Technol. 9(1), 135–142 (1982)CrossRef
38.
go back to reference A. Midha, D.E. Wert, Martensitic age-hardenable stainless steel. Adv. Mater. Process. 169(9), 30–33 (2011) A. Midha, D.E. Wert, Martensitic age-hardenable stainless steel. Adv. Mater. Process. 169(9), 30–33 (2011)
39.
go back to reference D. Broek, Elementary engineering fracture mechanics, 4th edn. (Martinus Nijhoff, Leiden, 1984) D. Broek, Elementary engineering fracture mechanics, 4th edn. (Martinus Nijhoff, Leiden, 1984)
Metadata
Title
Total Life Estimation of a Compressor Blade with Corrosion Pitting, SCC and Fatigue Cracking
Authors
O. Pedram
E. Poursaeidi
Publication date
01-04-2018
Publisher
Springer US
Published in
Journal of Failure Analysis and Prevention / Issue 2/2018
Print ISSN: 1547-7029
Electronic ISSN: 1864-1245
DOI
https://doi.org/10.1007/s11668-018-0417-5

Other articles of this Issue 2/2018

Journal of Failure Analysis and Prevention 2/2018 Go to the issue

Premium Partners