Skip to main content
Top
Published in: Designs, Codes and Cryptography 1-2/2017

02-08-2016

Towards a general construction of recursive MDS diffusion layers

Authors: Kishan Chand Gupta, Sumit Kumar Pandey, Ayineedi Venkateswarlu

Published in: Designs, Codes and Cryptography | Issue 1-2/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MDS matrices are of great importance in the design of block ciphers and hash functions. MDS matrices are not sparse and have a large description and thus induce costly implementation in software/hardware. To overcome this problem, in particular for applications in light-weight cryptography, it was proposed by Guo et al. to use recursive MDS matrices. A recursive MDS matrix is an MDS matrix which can be expressed as a power of some companion matrix. Following the work of Guo et al., some ad-hoc search techniques are proposed to find recursive MDS matrices which are suitable for hardware/software implementation. In another direction, coding theoretic techniques are used to directly construct recursive MDS matrices: Berger technique uses Gabidulin codes and Augot et al. technique uses shortened BCH codes. In this paper, we first characterize the polynomials that yield recursive MDS matrices in a more general setting. Based on this we provide three methods for obtaining such polynomials. Moreover, the recursive MDS matrices obtained using shortened BCH codes can also be obtained with our first method. In fact we get a larger set of polynomials than the method which uses shortened BCH codes. Our other methods appear similar to the method which uses Gabidulin codes. We get a new infinite class of recursive MDS matrices from one of the proposed methods. Although we propose three methods for the direct construction of recursive MDS matrices, our characterization results pave the way for new direct constructions.
Literature
1.
go back to reference Augot D., Finiasz M.: Exhaustive search for small dimension recursive MDS diffusion layers or block ciphers and hash functions. In: Proceedings of the 2013 IEEE International Symposium on Information Theory, pp. 1551–1555 (2013). Augot D., Finiasz M.: Exhaustive search for small dimension recursive MDS diffusion layers or block ciphers and hash functions. In: Proceedings of the 2013 IEEE International Symposium on Information Theory, pp. 1551–1555 (2013).
2.
3.
go back to reference Berger T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, New York (2013). Berger T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, New York (2013).
4.
go back to reference Berger T.P., Ourivski A.: Construction of new MDS codes from Gabidulin codes. In: Proceedings of ACCT 2009, Kranevo, Bulgaria, pp. 40–47 (2004). Berger T.P., Ourivski A.: Construction of new MDS codes from Gabidulin codes. In: Proceedings of ACCT 2009, Kranevo, Bulgaria, pp. 40–47 (2004).
5.
go back to reference Castagnoli G., Massey J.L., Schoeller P.A., von Seeman N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37(2), 337–342 (1991). Castagnoli G., Massey J.L., Schoeller P.A., von Seeman N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37(2), 337–342 (1991).
6.
go back to reference Daemen J., Rijmen V.: The design of Rijndael: AES—the advanced encryption standard. In: Information Security and Cryptography. Springer, New York (2002). Daemen J., Rijmen V.: The design of Rijndael: AES—the advanced encryption standard. In: Information Security and Cryptography. Springer, New York (2002).
7.
go back to reference Guo J., Peyrin T., Poshmann A.: The PHOTON family of lightweight hash functions. In: CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, New York (2011). Guo J., Peyrin T., Poshmann A.: The PHOTON family of lightweight hash functions. In: CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, New York (2011).
8.
go back to reference Guo J., Peyrin T., Poshmann A., Robshaw M.J.B.: The LED block cipher. In: CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, New York (2011). Guo J., Peyrin T., Poshmann A., Robshaw M.J.B.: The LED block cipher. In: CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, New York (2011).
9.
go back to reference Gupta K.C., Ray I.G.: On constructions of MDS matrices from companion matrices for lightweight cryptography. In: CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 29–43. Springer, New York (2013). Gupta K.C., Ray I.G.: On constructions of MDS matrices from companion matrices for lightweight cryptography. In: CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 29–43. Springer, New York (2013).
10.
go back to reference Gupta K.C., Ray I.G.: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015). Gupta K.C., Ray I.G.: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015).
12.
go back to reference Junod P., Vaudenay S.: Perfect diffusion primitives for block ciphers. In: SAC 2004. LNCS, vol. 3357, pp. 84–99. Springer, New York (2004). Junod P., Vaudenay S.: Perfect diffusion primitives for block ciphers. In: SAC 2004. LNCS, vol. 3357, pp. 84–99. Springer, New York (2004).
13.
go back to reference Junod P., Vaudenay S.: FOX: A new family of block ciphers. In: SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, New York (2004). Junod P., Vaudenay S.: FOX: A new family of block ciphers. In: SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, New York (2004).
14.
go back to reference Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997). Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).
15.
go back to reference MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977). MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977).
16.
go back to reference Sajadieh M., Dakhilalian M., Mala H., Sepehrdad P.: Recursive diffusion layers for block ciphers and hash functions. In: FSE 2012. LNCS, vol. 7549, pp. 385–401. Springer, New York (2012). Sajadieh M., Dakhilalian M., Mala H., Sepehrdad P.: Recursive diffusion layers for block ciphers and hash functions. In: FSE 2012. LNCS, vol. 7549, pp. 385–401. Springer, New York (2012).
17.
go back to reference Schnorr C.P., Vaudenay S.: Black box cryptanalysis of hash networks based on multipermutations. In: EUROCRYPT 1994. LNCS, vol. 950, pp. 47–57. Springer, New York (1995). Schnorr C.P., Vaudenay S.: Black box cryptanalysis of hash networks based on multipermutations. In: EUROCRYPT 1994. LNCS, vol. 950, pp. 47–57. Springer, New York (1995).
18.
go back to reference Shannon C.E.: Communication Theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949). Shannon C.E.: Communication Theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949).
19.
go back to reference Vaudenay S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Fast Software Encryption 1994. LNCS, vol. 1008, pp. 286–297. Springer, New York (1995). Vaudenay S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Fast Software Encryption 1994. LNCS, vol. 1008, pp. 286–297. Springer, New York (1995).
20.
go back to reference Wu S., Wang M., Wu W.: Recursive diffusion layers for (lightweight) block ciphers and hash functions. In: SAC 2013. LNCS, vol. 7707, pp. 355–371. Springer, New York (2013). Wu S., Wang M., Wu W.: Recursive diffusion layers for (lightweight) block ciphers and hash functions. In: SAC 2013. LNCS, vol. 7707, pp. 355–371. Springer, New York (2013).
Metadata
Title
Towards a general construction of recursive MDS diffusion layers
Authors
Kishan Chand Gupta
Sumit Kumar Pandey
Ayineedi Venkateswarlu
Publication date
02-08-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1-2/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0261-0

Other articles of this Issue 1-2/2017

Designs, Codes and Cryptography 1-2/2017 Go to the issue

Premium Partner