Skip to main content
Top
Published in: Thermal Engineering 1/2024

01-01-2024 | GENERAL SUBJECTS

Towards Climate Neutrality: Will Russian Forest Stand Against Energy?

Authors: V. V. Klimenko, A. V. Klimenko, A. G. Tereshin

Published in: Thermal Engineering | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The prospects for reducing the carbon intensity of the Russian economy and the possibility of achieving climate neutrality of the country’s national economy by 2060 are examined. Based on a historical-extrapolation approach to the study of the development of various socio-technical systems and by comparing the dynamics of carbon indicators of the economies of Russia and the leading countries of the world, it is shown that full compensation of anthropogenic greenhouse gases emissions when absorbed by the biosphere (primarily forests) is today rather only theoretically possible. The condition for this is the implementation of extremely ambitious large-scale reform programs in all sectors of the Russian economy, from energy to forestry. Thus, in an optimistic scenario, the decline rate of specific indicators of greenhouse gas emissions per capita should have the maximum values achieved in the world over the last 50 years, i.e. 1%/year. Forest management must include full compensation for increasing deforestation and a 50% reduction in forest losses from fires, which are currently the second (after energy) source of greenhouse gas emissions into the atmosphere. The most likely scenario is one in which the decline rate of specific greenhouse gas emissions per capita is 0.5%/year and a moderate increase in the absorption capacity of forests is ensured, mainly due to the implementation of forest climate projects and a reduction in wildfire emissions. If the latter scenario is implemented, net greenhouse gas emissions could amount to approximately 700 Mt CO2 (equiv.) by 2060, which will require the nation’s carbon capture and storage industry on an unprecedented scale to achieve climate neutrality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Strategy of Social and Economical Development of Russia with Low Greenhouse Gas Emissions until 2050, Approved by RF Government Decree No. 3052-r of October 29, 2021. Strategy of Social and Economical Development of Russia with Low Greenhouse Gas Emissions until 2050, Approved by RF Government Decree No. 3052-r of October 29, 2021.
4.
go back to reference E. A. Shvarts and A. V. Ptichnikov, “Strategy of low-carbon development of Russia and the role of forest in its implementation,” Nauchn. Tr. Vol’nogo Ekon. O-va Ross. 236, 399–426 (2022). E. A. Shvarts and A. V. Ptichnikov, “Strategy of low-carbon development of Russia and the role of forest in its implementation,” Nauchn. Tr. Vol’nogo Ekon. O-va Ross. 236, 399–426 (2022).
5.
go back to reference I. A. Bashmakov, “Strategy of low-carbon development of Russian economics,” Vopr. Ekon., No. 7, 51–74 (2020). I. A. Bashmakov, “Strategy of low-carbon development of Russian economics,” Vopr. Ekon., No. 7, 51–74 (2020).
6.
go back to reference I. A. Bashmakov, “Scenarios of Russia’s progression to carbon neutrality,” Energosberezhenie, No. 1, 40–49 (2023). I. A. Bashmakov, “Scenarios of Russia’s progression to carbon neutrality,” Energosberezhenie, No. 1, 40–49 (2023).
7.
go back to reference K. S. Degtyarev, M. Yu. Berezkin, and O. A. Sinyugin, “Evaluation of investment spending into transition to carbon neutrality in Russia until 2060,” Okruzh. Sreda Energoved., No. 2, 29–39 (2022). K. S. Degtyarev, M. Yu. Berezkin, and O. A. Sinyugin, “Evaluation of investment spending into transition to carbon neutrality in Russia until 2060,” Okruzh. Sreda Energoved., No. 2, 29–39 (2022).
8.
go back to reference A. M. Mastepanov, “Russia on the path to carbon neutrality,” Energ. Polit., No. 1(167), 94–108 (2022). A. M. Mastepanov, “Russia on the path to carbon neutrality,” Energ. Polit., No. 1(167), 94–108 (2022).
9.
go back to reference T. A. Lan’shina, A. D. Loginova, and D. E. Stoyanov, “Transition of largest world economies to carbon neutrality — Spheres of potential partnership with Russia,” Vestn. Mezhdunar. Org. 16 (4), 98–125 (2021). T. A. Lan’shina, A. D. Loginova, and D. E. Stoyanov, “Transition of largest world economies to carbon neutrality — Spheres of potential partnership with Russia,” Vestn. Mezhdunar. Org. 16 (4), 98–125 (2021).
10.
go back to reference S. P. Filippov, “Prospects of development of Russian energy sector,” Gazoturbinnye Tekhnol., No. 3(186), 2–6 (2022). S. P. Filippov, “Prospects of development of Russian energy sector,” Gazoturbinnye Tekhnol., No. 3(186), 2–6 (2022).
11.
go back to reference Study of Directions and of a System of Measures for Managing the Post-Crisis Russian Energy Sector Restoration (Inst. Energ. Issled. Ross. Akad. Nauk, Moscow, 2022) [in Russian]. Study of Directions and of a System of Measures for Managing the Post-Crisis Russian Energy Sector Restoration (Inst. Energ. Issled. Ross. Akad. Nauk, Moscow, 2022) [in Russian].
12.
go back to reference National Report on the Inventory of Anthropogenic Emissions by Sources and Absorption by Sinks of Greenhouse Gases not Regulated by the Montreal Protocol, for 1990–2020 (Rosgidromet, Moscow, 2022), Part 1 [in Russian]. National Report on the Inventory of Anthropogenic Emissions by Sources and Absorption by Sinks of Greenhouse Gases not Regulated by the Montreal Protocol, for 1990–2020 (Rosgidromet, Moscow, 2022), Part 1 [in Russian].
13.
go back to reference Measures for Reducing the Area of Forest Fires in the Russian Federation, RF President Decree No. 382 of June 15, 2022. Measures for Reducing the Area of Forest Fires in the Russian Federation, RF President Decree No. 382 of June 15, 2022.
14.
15.
go back to reference V. G. Bondur, O. S. Voronova, E. V. Cherepanova, M. N. Tsidilina, and A. L. Zima, “Spatiotemporal analysis of multi-year wildfires and emissions of harmful trace gases and aerosols in Russia based on satellite data,” Izvestiya, Atmospheric and Oceanic Physics, Vol. 56, No. 12, pp. 1457–1469 (2020).https://doi.org/10.1134/S0001433820120348 V. G. Bondur, O. S. Voronova, E. V. Cherepanova, M. N. Tsidilina, and A. L. Zima, “Spatiotemporal analysis of multi-year wildfires and emissions of harmful trace gases and aerosols in Russia based on satellite data,” Izvestiya, Atmospheric and Oceanic Physics, Vol. 56, No. 12, pp. 1457–1469 (2020).https://​doi.​org/​10.​1134/​S000143382012034​8
16.
17.
go back to reference E. A. Lupyan, S. A. Bartalev, I. B. Balashov, B. A. Egorov, D. B. Ershov, D. A. Kobets, K. S. Sen’ko, F. B. Stytsenko, and I. G. Sychugov, “Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection),” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (6), 158–175 (2017). https://doi.org/10.21046/2070-7401-2017-14-6-158-175CrossRef E. A. Lupyan, S. A. Bartalev, I. B. Balashov, B. A. Egorov, D. B. Ershov, D. A. Kobets, K. S. Sen’ko, F. B. Stytsenko, and I. G. Sychugov, “Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection),” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (6), 158–175 (2017). https://​doi.​org/​10.​21046/​2070-7401-2017-14-6-158-175CrossRef
18.
go back to reference S. A. Bartalev, “The large-scale changes of Russian forests according to Earth observations,” Presented at Young Scientists’ School and Conf. on Remote Sensing of Vegetation at High Latitudes in Response to Climate Change and Other Disturbances, Moscow, Russia, Nov. 16–17, 2020. http://conf.rse.geosmis.ru/files/ pdf/18/8465_Bartalev_YSS_2020_Eng.pdf S. A. Bartalev, “The large-scale changes of Russian forests according to Earth observations,” Presented at Young Scientists’ School and Conf. on Remote Sensing of Vegetation at High Latitudes in Response to Climate Change and Other Disturbances, Moscow, Russia, Nov. 16–17, 2020. http://​conf.​rse.​geosmis.​ru/​files/​ pdf/18/8465_Bartalev_YSS_2020_Eng.pdf
19.
go back to reference A. V. Eliseev and A. V. Vasil’eva, “Nature fires: Observation data and simulation,” Fundam. Prikl. Klimatol. 3, 73–119 (2020). A. V. Eliseev and A. V. Vasil’eva, “Nature fires: Observation data and simulation,” Fundam. Prikl. Klimatol. 3, 73–119 (2020).
20.
go back to reference V. I. Grabovskii and D. G. Zamolodchikov, “Forecast of forest fires in the Russian Federation until the end of century based on scenarios of climate change RCP4.5 and RCP8.5,” in Scientific Basics of Stable Forest Management: Proc. Sci. Conf. with Int. Participation Dedicated to the 30th Anniversary of the Center of Ecology and Forest Efficiency Problems of the Russian Academy of Sciences, Moscow, Russia, Apr. 25–29, 2022, pp. 260–262. V. I. Grabovskii and D. G. Zamolodchikov, “Forecast of forest fires in the Russian Federation until the end of century based on scenarios of climate change RCP4.5 and RCP8.5,” in Scientific Basics of Stable Forest Management: Proc. Sci. Conf. with Int. Participation Dedicated to the 30th Anniversary of the Center of Ecology and Forest Efficiency Problems of the Russian Academy of Sciences, Moscow, Russia, Apr. 25–29, 2022, pp. 260–262.
21.
go back to reference BP Statistical Review of World Energy 2022 (BP, London, 2022). BP Statistical Review of World Energy 2022 (BP, London, 2022).
22.
go back to reference World Population Prospects 2022 (United Nations, Department of Economic and Social Affairs, Population Division, New York, 2022). World Population Prospects 2022 (United Nations, Department of Economic and Social Affairs, Population Division, New York, 2022).
23.
go back to reference V. V. Klimenko, S. Yu. Snytin, and M. V. Fedorov, “Energy sector and the upcoming climate change in 1990–2020,” Teploenergetika, No. 6, 14–20 (1990). V. V. Klimenko, S. Yu. Snytin, and M. V. Fedorov, “Energy sector and the upcoming climate change in 1990–2020,” Teploenergetika, No. 6, 14–20 (1990).
25.
go back to reference S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Model estimates for contribution of natural and anthropogenic CO2 and CH4 emissions into the atmosphere from the territory of Russia, China, Canada, and the USA to global climate change in the 21st century,” Meteorol. Gidrol., No. 10, 18–32 (2022). https://doi.org/10.52002/0130-2906-2022-10-18-32 S. N. Denisov, A. V. Eliseev, and I. I. Mokhov, “Model estimates for contribution of natural and anthropogenic CO2 and CH4 emissions into the atmosphere from the territory of Russia, China, Canada, and the USA to global climate change in the 21st century,” Meteorol. Gidrol., No. 10, 18–32 (2022). https://​doi.​org/​10.​52002/​0130-2906-2022-10-18-32
26.
go back to reference Development Strategy of the Forest Complex of the Russian Federation until 2030. Approved by RF Government Decree No. 312-r of February 11, 2021. Development Strategy of the Forest Complex of the Russian Federation until 2030. Approved by RF Government Decree No. 312-r of February 11, 2021.
28.
go back to reference M. Fernández-Martínez, J. Peñuelas, F. Chevallier, P. Ciais, M. Obersteiner, C. Rödenbeck, J. Sardans, S. Vicca, H. Yang, S. Sitch, P. Friedlingstein, V. K. Arora, D. S. Goll, A. K. Jain, D. L. Lombardozzi, P. C. McGuire, and I. A. Janssens, “Diagnozing destabilization risk in global land carbon sinks,” Nature 615, 848–856 (2023). https://doi.org/10.1038/s41586-023-05725-1ADSCrossRefPubMed M. Fernández-Martínez, J. Peñuelas, F. Chevallier, P. Ciais, M. Obersteiner, C. Rödenbeck, J. Sardans, S. Vicca, H. Yang, S. Sitch, P. Friedlingstein, V. K. Arora, D. S. Goll, A. K. Jain, D. L. Lombardozzi, P. C. McGuire, and I. A. Janssens, “Diagnozing destabilization risk in global land carbon sinks,” Nature 615, 848–856 (2023). https://​doi.​org/​10.​1038/​s41586-023-05725-1ADSCrossRefPubMed
29.
go back to reference Energy Strategy of the Russian Federation for the Period until 2035, Approved by RF Government Decree No. 1523-r of June 9, 2020. Energy Strategy of the Russian Federation for the Period until 2035, Approved by RF Government Decree No. 1523-r of June 9, 2020.
31.
go back to reference A. V. Filipchuk, N. V. Malysheva, T. A. Zolina, and A. N. Yugov, “An analytical review of methods for metering emissions and absorption of atmospheric greenhouse gases by forests,” Lesokhoz. Inf., No. 3, 36–85 (2016). A. V. Filipchuk, N. V. Malysheva, T. A. Zolina, and A. N. Yugov, “An analytical review of methods for metering emissions and absorption of atmospheric greenhouse gases by forests,” Lesokhoz. Inf., No. 3, 36–85 (2016).
32.
go back to reference A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. van der Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E. D. Schulze, “An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods,” Biogeosciences 9, 5323–5340 (2012).ADSCrossRef A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. van der Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E. D. Schulze, “An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods,” Biogeosciences 9, 5323–5340 (2012).ADSCrossRef
33.
go back to reference Forecast of Development of the Forest Sector of the Russian Federation until 2030, Ed. by A. Petrov and M. Lobovikov (Food and Agriculture Organization of the United Nations, Rome, 2012) [in Russian]. https://www.fao.org/3/i3020r/i3020r.pdf Forecast of Development of the Forest Sector of the Russian Federation until 2030, Ed. by A. Petrov and M. Lobovikov (Food and Agriculture Organization of the United Nations, Rome, 2012) [in Russian]. https://​www.​fao.​org/​3/​i3020r/​i3020r.​pdf
34.
go back to reference A. Arneth, R. Makkone, S. Olin, P. Paasonen, T. Holst, M. K. Kajos, M. Kulmala, T. Maximov, P. A. Miller, and G. Schurgers, “Future vegetation-climate interactions in Eastern Siberia: an assessment of the competing effects of CO2 and secondary organic aerosols,” Atmos. Chem. Phys. 16, 5243–5262 (2016).ADSCrossRef A. Arneth, R. Makkone, S. Olin, P. Paasonen, T. Holst, M. K. Kajos, M. Kulmala, T. Maximov, P. A. Miller, and G. Schurgers, “Future vegetation-climate interactions in Eastern Siberia: an assessment of the competing effects of CO2 and secondary organic aerosols,” Atmos. Chem. Phys. 16, 5243–5262 (2016).ADSCrossRef
35.
go back to reference M. Steyn, J. Oglesby, G. Turan, A. Zapantis, and R. Gebremedhin, The Global Status of Carbon Capture and Storage 2022 (Global CCS Inst., Washington, DC, 2022). M. Steyn, J. Oglesby, G. Turan, A. Zapantis, and R. Gebremedhin, The Global Status of Carbon Capture and Storage 2022 (Global CCS Inst., Washington, DC, 2022).
36.
go back to reference N. L. Harris, D. A. Gibbs, A. Baccini, R. Birdsey, S. de Bruin, M. Farina, L. Fatoyinbo, M. C. Hansen, M. Herold, R. A. Houghton, P. V. Potapov, D. R. Suarez, R. M. Roman-Cuesta, S. S. Saatchi, C. M. Slay, S. Turubanova, and A. Tyukavina, “Global maps of twenty-first century forest carbon fluxes,” Nat. Clim. Change 11, 234–240 (2021).ADSCrossRef N. L. Harris, D. A. Gibbs, A. Baccini, R. Birdsey, S. de Bruin, M. Farina, L. Fatoyinbo, M. C. Hansen, M. Herold, R. A. Houghton, P. V. Potapov, D. R. Suarez, R. M. Roman-Cuesta, S. S. Saatchi, C. M. Slay, S. Turubanova, and A. Tyukavina, “Global maps of twenty-first century forest carbon fluxes,” Nat. Clim. Change 11, 234–240 (2021).ADSCrossRef
37.
go back to reference H. Wang, F. Jiang, J. Wang, W. Ju, and J. M. Chen, “Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2X CO2 retrievals,” Atmos. Chem. Phys. 19, 12067–12082 (2019).ADSCrossRef H. Wang, F. Jiang, J. Wang, W. Ju, and J. M. Chen, “Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2X CO2 retrievals,” Atmos. Chem. Phys. 19, 12067–12082 (2019).ADSCrossRef
38.
go back to reference Kh. S. Iggleston, L. Buendia, K. Miva, T. Ngara, and K. Tanabe, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Inst. for Global Environmental Strategies, Hayama, Japan, 2006). Kh. S. Iggleston, L. Buendia, K. Miva, T. Ngara, and K. Tanabe, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Inst. for Global Environmental Strategies, Hayama, Japan, 2006).
39.
go back to reference D. G. Zamolodchikov, V. I. Grabovskii, and O. V. Chestnykh, “A new review of carbon balance in the forest of federal regions of the Russian Federation,” in Biodiversity and Functioning of Forest Ecosystems (Tsentr. Probl. Ekol. Prod. Lesov Ross. Akad. Nauk, Moscow, 2021), 153–173 [in Russian]. D. G. Zamolodchikov, V. I. Grabovskii, and O. V. Chestnykh, “A new review of carbon balance in the forest of federal regions of the Russian Federation,” in Biodiversity and Functioning of Forest Ecosystems (Tsentr. Probl. Ekol. Prod. Lesov Ross. Akad. Nauk, Moscow, 2021), 153–173 [in Russian].
Metadata
Title
Towards Climate Neutrality: Will Russian Forest Stand Against Energy?
Authors
V. V. Klimenko
A. V. Klimenko
A. G. Tereshin
Publication date
01-01-2024
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 1/2024
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601524010051

Other articles of this Issue 1/2024

Thermal Engineering 1/2024 Go to the issue

EditorialNotes

WE’RE 70!

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Computational and Experimental Investigation of the Intensity and Scale of Flow Turbulence Influence on Losses in a Vane Cascade

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Numerical-and-Experimental Substantiation of Deep Unloading of an E-420-13.8-560GM Boiler

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Low-Emission Combustion Chambers of GTU: Modern Trends, Diagnostics, and Optimization (Review)

Premium Partner