Skip to main content
Top

2023 | OriginalPaper | Chapter

Towards Learning-Based Control of Connected and Automated Vehicles: Challenges and Perspectives

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The exploitation of communication technologies enables connected and automated vehicles (CAVs) to operate more collaboratively, that is, by exchanging or even negotiating future trajectories and control actions. That way, CAVs (or agents) can establish a networked control system such as to safely automate road traffic in a collaborative fashion. A rich body of literature is available, e.g., on intersection automation, automated lane change or lane merging scenarios. These control concepts, though, are most tailored to the particular application and are in general not applicable to multiple scenarios. This chapter conveys the challenges and perspectives of modeling and optimization-based control techniques for the safe coordination of multiple connected agents in road traffic scenarios. Along these lines, the perspective of generalizing controller design to serve multiple use cases simultaneously instead of designing separate controllers for every use case is discussed. Moreover, the opportunities of learning-based control in case of model uncertainties and mixed-traffic scenarios, involving connected and non-connected agents, are outlined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bertsekas D, Tsitsiklis J (1989) Parallel and distributed computation: numerical methods. Prentice Hall, HobokenMATH Bertsekas D, Tsitsiklis J (1989) Parallel and distributed computation: numerical methods. Prentice Hall, HobokenMATH
2.
go back to reference Bevly D, Cao X, Gordon M, Ozbilgin G, Kari D, Nelson B, Woodruff J, Barth M, Murray C, Kurt A, Redmill K, Ozguner U (2016) Lane change and merge maneuvers for connected and automated vehicles: a survey. IEEE Trans Intell Veh 1(1):105–120CrossRef Bevly D, Cao X, Gordon M, Ozbilgin G, Kari D, Nelson B, Woodruff J, Barth M, Murray C, Kurt A, Redmill K, Ozguner U (2016) Lane change and merge maneuvers for connected and automated vehicles: a survey. IEEE Trans Intell Veh 1(1):105–120CrossRef
3.
go back to reference Blasi S, Kögel M, Findeisen R (2018) Distributed model predictive control using cooperative contract options. In: IFAC Conf Nonlinear Model Predictive Control 51(20):448–454 Blasi S, Kögel M, Findeisen R (2018) Distributed model predictive control using cooperative contract options. In: IFAC Conf Nonlinear Model Predictive Control 51(20):448–454
4.
go back to reference Bock H, Plitt K (1984) A multiple shooting algorithm for direct solution of optimal control problems. IFAC World Congr 17(2):1603–1608 Bock H, Plitt K (1984) A multiple shooting algorithm for direct solution of optimal control problems. IFAC World Congr 17(2):1603–1608
5.
go back to reference Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122MATHCrossRef Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122MATHCrossRef
6.
7.
go back to reference Brüdigam T, Capone A, Hirche S, Wollherr D, Leibold M (2021) Gaussian process-based stochastic model predictive control for overtaking in autonomous racing. In: International conference on robotics and automation (ICRA) Brüdigam T, Capone A, Hirche S, Wollherr D, Leibold M (2021) Gaussian process-based stochastic model predictive control for overtaking in autonomous racing. In: International conference on robotics and automation (ICRA)
8.
go back to reference Carvalho A, Lefévre S, Schildbach G, Kong J, Borrelli F (2015) Automated driving: the role of forecasts and uncertainty–a control perspective. Eur J Control 24:14–32MathSciNetMATHCrossRef Carvalho A, Lefévre S, Schildbach G, Kong J, Borrelli F (2015) Automated driving: the role of forecasts and uncertainty–a control perspective. Eur J Control 24:14–32MathSciNetMATHCrossRef
9.
go back to reference Engelmann A, Jiang Y, Houska B, Faulwasser T (2020) Decomposition of nonconvex optimization via bi-level distributed ALADIN. IEEE Trans Control Netw Syst 7(4):1848–1858MathSciNetCrossRef Engelmann A, Jiang Y, Houska B, Faulwasser T (2020) Decomposition of nonconvex optimization via bi-level distributed ALADIN. IEEE Trans Control Netw Syst 7(4):1848–1858MathSciNetCrossRef
10.
go back to reference Febbo H, Liu J, Jayakumar P, Stein JL, Ersal T (2017) Moving obstacle avoidance for large, high-speed autonomous ground vehicles. In: IEEE American control conference, pp 5568–5573 Febbo H, Liu J, Jayakumar P, Stein JL, Ersal T (2017) Moving obstacle avoidance for large, high-speed autonomous ground vehicles. In: IEEE American control conference, pp 5568–5573
11.
go back to reference Guo L, Jia Y (2021) Anticipative and predictive control of automated vehicles in communication-constrained connected mixed traffic. IEEE Trans Intell Transp Syst, 1–14 Guo L, Jia Y (2021) Anticipative and predictive control of automated vehicles in communication-constrained connected mixed traffic. IEEE Trans Intell Transp Syst, 1–14
12.
go back to reference Hakobyan A, Yang I (2020) Learning-based distributionally robust motion control with Gaussian processes. In: IEEE conference on intelligent robots and systems (IROS), pp 7667–7674 Hakobyan A, Yang I (2020) Learning-based distributionally robust motion control with Gaussian processes. In: IEEE conference on intelligent robots and systems (IROS), pp 7667–7674
13.
go back to reference Hewing L, Kabzan J, Zeilinger MN (2020) Cautious model predictive control using gaussian process regression. IEEE Trans Control Syst Technol 28(6):2736–2743CrossRef Hewing L, Kabzan J, Zeilinger MN (2020) Cautious model predictive control using gaussian process regression. IEEE Trans Control Syst Technol 28(6):2736–2743CrossRef
14.
go back to reference Hong M, Luo ZQ, Razaviyayn M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim 26:337–364MathSciNetMATHCrossRef Hong M, Luo ZQ, Razaviyayn M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim 26:337–364MathSciNetMATHCrossRef
15.
go back to reference Houska B, Ferreau HJ, Diehl M (2011) An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10):2279–2285MathSciNetMATHCrossRef Houska B, Ferreau HJ, Diehl M (2011) An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10):2279–2285MathSciNetMATHCrossRef
16.
go back to reference Hu X, Sun J (2019) Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area. Transp Res Part C Emerg Technol 101:111–125CrossRef Hu X, Sun J (2019) Trajectory optimization of connected and autonomous vehicles at a multilane freeway merging area. Transp Res Part C Emerg Technol 101:111–125CrossRef
17.
go back to reference Hult R, Zanon M, Gros S, Falcone P (2016) Primal decomposition of the optimal coordination of vehicles at traffic intersections. In: IEEE conference on decision and control, pp 2567–2573 Hult R, Zanon M, Gros S, Falcone P (2016) Primal decomposition of the optimal coordination of vehicles at traffic intersections. In: IEEE conference on decision and control, pp 2567–2573
18.
go back to reference Hult R, Zanon M, Gros S, Falcone P (2019) Optimal coordination of automated vehicles at intersections: theory and experiments. IEEE Trans Control Syst Technol 27(6):2510–2525CrossRef Hult R, Zanon M, Gros S, Falcone P (2019) Optimal coordination of automated vehicles at intersections: theory and experiments. IEEE Trans Control Syst Technol 27(6):2510–2525CrossRef
19.
go back to reference Janssen NHJ, Kools L, Antunes DJ (2020) Embedded Learning-based model predictive control for mobile robots using Gaussian process regression. In: IEEE American control conference, pp 1124–1130 Janssen NHJ, Kools L, Antunes DJ (2020) Embedded Learning-based model predictive control for mobile robots using Gaussian process regression. In: IEEE American control conference, pp 1124–1130
20.
go back to reference Jiang Y, Zanon M, Hult R, Houska B (2017) Distributed algorithm for optimal vehicle coordination at traffic intersections. In: IFAC world congress, pp 11577–11582 Jiang Y, Zanon M, Hult R, Houska B (2017) Distributed algorithm for optimal vehicle coordination at traffic intersections. In: IFAC world congress, pp 11577–11582
21.
go back to reference Kamal MAS, Imura J, Hayakawa T, Ohata A, Aihara K (2015) A vehicle-intersection coordination scheme for smooth flows of traffic without using traffic lights. IEEE Trans Intell Transp Syst 16(3):1136–1147CrossRef Kamal MAS, Imura J, Hayakawa T, Ohata A, Aihara K (2015) A vehicle-intersection coordination scheme for smooth flows of traffic without using traffic lights. IEEE Trans Intell Transp Syst 16(3):1136–1147CrossRef
22.
go back to reference Katriniok A (2020) Nonconvex consensus ADMM for cooperative lane change maneuvers of connected automated vehicles. IFAC world congress 53:14336–14343 Katriniok A (2020) Nonconvex consensus ADMM for cooperative lane change maneuvers of connected automated vehicles. IFAC world congress 53:14336–14343
23.
go back to reference Katriniok A, Kleibaum P, Joševski M (2017) Distributed model predictive control for intersection automation using a parallelized optimization approach. IFAC world congress 50:5940–5946 Katriniok A, Kleibaum P, Joševski M (2017) Distributed model predictive control for intersection automation using a parallelized optimization approach. IFAC world congress 50:5940–5946
24.
go back to reference Katriniok A, Rosarius B, Mähönen P (2021) Fully distributed model predictive control of connected automated vehicles in intersections: theory and vehicle experiments. In: IEEE transactions on intelligent transportation systems. https://doi.org/10.1109/TITS.2022.3162038 Katriniok A, Rosarius B, Mähönen P (2021) Fully distributed model predictive control of connected automated vehicles in intersections: theory and vehicle experiments. In: IEEE transactions on intelligent transportation systems. https://​doi.​org/​10.​1109/​TITS.​2022.​3162038
25.
go back to reference Katriniok A, Sopasakis P, Schuurmans M, Patrinos P (2019) Nonlinear model predictive control for distributed motion planning in road intersections using PANOC. In: IEEE conference on decision and control, pp 5272–5278 Katriniok A, Sopasakis P, Schuurmans M, Patrinos P (2019) Nonlinear model predictive control for distributed motion planning in road intersections using PANOC. In: IEEE conference on decision and control, pp 5272–5278
26.
go back to reference Kesting A, Treiber M, Helbing D (2010) Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos Trans R Soc A Math Phys Eng Sci 368:4585–4605MATHCrossRef Kesting A, Treiber M, Helbing D (2010) Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos Trans R Soc A Math Phys Eng Sci 368:4585–4605MATHCrossRef
27.
go back to reference Khayatian M, Mehrabian M, Andert E, Dedinsky R, Choudhary S, Lou Y, Shirvastava A (2020) A survey on intersection management of connected autonomous vehicles. ACM Trans Cyber-Phys Syst 4(4):1–27CrossRef Khayatian M, Mehrabian M, Andert E, Dedinsky R, Choudhary S, Lou Y, Shirvastava A (2020) A survey on intersection management of connected autonomous vehicles. ACM Trans Cyber-Phys Syst 4(4):1–27CrossRef
28.
go back to reference Kim KD, Kumar PR (2014) An MPC-based approach to provable system-wide safety and liveness of autonomous ground traffic. IEEE Trans Autom Control 59:3341–3356MathSciNetMATHCrossRef Kim KD, Kumar PR (2014) An MPC-based approach to provable system-wide safety and liveness of autonomous ground traffic. IEEE Trans Autom Control 59:3341–3356MathSciNetMATHCrossRef
29.
go back to reference Kneissl M, Molin A, Esen H, Hirche S (2018) A feasible MPC-based negotiation algorithm for automated intersection crossing. In: European control conference, pp 1282–1288 Kneissl M, Molin A, Esen H, Hirche S (2018) A feasible MPC-based negotiation algorithm for automated intersection crossing. In: European control conference, pp 1282–1288
30.
go back to reference Lim W, Lee S, Sunwoo M, Jo K (2018) Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans Intell Transp Syst 19(2):613–626CrossRef Lim W, Lee S, Sunwoo M, Jo K (2018) Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Trans Intell Transp Syst 19(2):613–626CrossRef
32.
go back to reference Liu C, Lin C, Shiraishi S, Tomizuka M (2018) Distributed conflict resolution for connected autonomous vehicles. IEEE Trans Intell Veh 3(1):18–29CrossRef Liu C, Lin C, Shiraishi S, Tomizuka M (2018) Distributed conflict resolution for connected autonomous vehicles. IEEE Trans Intell Veh 3(1):18–29CrossRef
33.
go back to reference Liu P, Ozguner U, Zhang Y (2017) Distributed MPC for cooperative highway driving and energy-economy validation via microscopic simulations. Transp Res Part C Emerg Technol 77:80–95CrossRef Liu P, Ozguner U, Zhang Y (2017) Distributed MPC for cooperative highway driving and energy-economy validation via microscopic simulations. Transp Res Part C Emerg Technol 77:80–95CrossRef
34.
go back to reference Liu P, Yang R, Xu Z (2019) How safe is safe enough for self-driving vehicles? Risk Anal 39(2):315–325CrossRef Liu P, Yang R, Xu Z (2019) How safe is safe enough for self-driving vehicles? Risk Anal 39(2):315–325CrossRef
35.
go back to reference Maciejowski J (2002) Predictive control with constraints. Prentice Hall, HarlowMATH Maciejowski J (2002) Predictive control with constraints. Prentice Hall, HarlowMATH
36.
go back to reference Malikopoulos AA, Beaver L, Chremos IV (2021) Optimal time trajectory and coordination for connected and automated vehicles. Automatica 125:109469MathSciNetMATHCrossRef Malikopoulos AA, Beaver L, Chremos IV (2021) Optimal time trajectory and coordination for connected and automated vehicles. Automatica 125:109469MathSciNetMATHCrossRef
37.
go back to reference Malikopoulos AA, Cassandras CG, Zhang YJ (2018) A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica 93:244–256MathSciNetMATHCrossRef Malikopoulos AA, Cassandras CG, Zhang YJ (2018) A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica 93:244–256MathSciNetMATHCrossRef
38.
go back to reference Mesbah A (2016) Stochastic model predictive control: an overview and perspectives for future research. IEEE Control Syst Mag 36(6):30–44MathSciNetMATHCrossRef Mesbah A (2016) Stochastic model predictive control: an overview and perspectives for future research. IEEE Control Syst Mag 36(6):30–44MathSciNetMATHCrossRef
39.
go back to reference Mesbah A (2018) Stochastic model predictive control with active uncertainty learning: a survey on dual control. Annu Rev Control 45:107–117MathSciNetCrossRef Mesbah A (2018) Stochastic model predictive control with active uncertainty learning: a survey on dual control. Annu Rev Control 45:107–117MathSciNetCrossRef
40.
go back to reference Molinari F, Grapentin A, Charalampidis A, Raisch J (2019) Automating lane changes and collision avoidance on highways via distributed agreement. Automatisierungstechnik 67(12):1047–1057CrossRef Molinari F, Grapentin A, Charalampidis A, Raisch J (2019) Automating lane changes and collision avoidance on highways via distributed agreement. Automatisierungstechnik 67(12):1047–1057CrossRef
41.
go back to reference Molinari F, Katriniok A, Raisch J (2020) Real-time distributed automation of road intersections. IFAC world congress 52:2606–2613 Molinari F, Katriniok A, Raisch J (2020) Real-time distributed automation of road intersections. IFAC world congress 52:2606–2613
42.
go back to reference Molinari F, Raisch J (2018) Automation of road intersections using consensus-based auction algorithms. In: IEEE American control conference, pp 5994–6001 Molinari F, Raisch J (2018) Automation of road intersections using consensus-based auction algorithms. In: IEEE American control conference, pp 5994–6001
43.
go back to reference Namazi E, Li J, Lu C (2019) Intelligent intersection management systems considering autonomous vehicles: a systematic literature review. IEEE Access 7:91946–91965CrossRef Namazi E, Li J, Lu C (2019) Intelligent intersection management systems considering autonomous vehicles: a systematic literature review. IEEE Access 7:91946–91965CrossRef
44.
go back to reference Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH
45.
go back to reference Notarstefano G, Notarnicola I, Camisa A (2019) Distributed optimization for smart cyber-physical networks. Foundations Trends Syst Control 7(3):253–383CrossRef Notarstefano G, Notarnicola I, Camisa A (2019) Distributed optimization for smart cyber-physical networks. Foundations Trends Syst Control 7(3):253–383CrossRef
46.
go back to reference Qian X, de La Fortelle A, Moutarde F (2016) A hierarchical model predictive control framework for on-road formation control of autonomous vehicles. In: IEEE intelligent vehicles symposium, pp 376–381 Qian X, de La Fortelle A, Moutarde F (2016) A hierarchical model predictive control framework for on-road formation control of autonomous vehicles. In: IEEE intelligent vehicles symposium, pp 376–381
47.
go back to reference Quinlan M, Au TC, Zhu J, Stiurca N, Stone P (2010) Bringing simulation to life: a mixed reality autonomous intersection. In: Proceedings of IROS 2010-IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) Quinlan M, Au TC, Zhu J, Stiurca N, Stone P (2010) Bringing simulation to life: a mixed reality autonomous intersection. In: Proceedings of IROS 2010-IEEE/RSJ international conference on intelligent robots and systems (IROS 2010)
50.
go back to reference Rasmussen C, Williams C (2006) Gaussian processes for machine learning. The MIT Press, CambridgeMATH Rasmussen C, Williams C (2006) Gaussian processes for machine learning. The MIT Press, CambridgeMATH
51.
go back to reference Sadigh D, Dragan AD, Sastry SS, Seshia SA (2017) Active preference-based learning of reward functions. In: Robotics: science and systems Sadigh D, Dragan AD, Sastry SS, Seshia SA (2017) Active preference-based learning of reward functions. In: Robotics: science and systems
52.
go back to reference Schuurmans M, Katriniok A, Tseng HE, Patrinos P (2020) Learning-based risk-averse model predictive control for adaptive cruise control with stochastic driver models. IFAC world congress 53:15128–15133 Schuurmans M, Katriniok A, Tseng HE, Patrinos P (2020) Learning-based risk-averse model predictive control for adaptive cruise control with stochastic driver models. IFAC world congress 53:15128–15133
53.
go back to reference Shi J, Zheng Y, Jiang Y, Zanon M, Hult R, Houska B (2018) Distributed control algorithm for vehicle coordination at traffic intersections. In: European control conference, pp 1166–1171 Shi J, Zheng Y, Jiang Y, Zanon M, Hult R, Houska B (2018) Distributed control algorithm for vehicle coordination at traffic intersections. In: European control conference, pp 1166–1171
54.
go back to reference Sopasakis P, Fresk E, Patrinos P (2020) OpEn: code generation for embedded nonconvex optimization. IFAC world congress 53:6548–6554 Sopasakis P, Fresk E, Patrinos P (2020) OpEn: code generation for embedded nonconvex optimization. IFAC world congress 53:6548–6554
55.
go back to reference Stella L, Themelis A, Patrinos P (2017) Forward-backward quasi-Newton methods for nonsmooth optimization problems. Comput Optim Appl 67(3):443–487MathSciNetMATHCrossRef Stella L, Themelis A, Patrinos P (2017) Forward-backward quasi-Newton methods for nonsmooth optimization problems. Comput Optim Appl 67(3):443–487MathSciNetMATHCrossRef
56.
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, CambridgeMATH
57.
go back to reference Tang W, Daoutidis P (2021) Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm. Optimization and engineering, Springer, BerlinMATH Tang W, Daoutidis P (2021) Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm. Optimization and engineering, Springer, BerlinMATH
58.
go back to reference Taylor AT, Berrueta TA, Murphey TD (2021) Active learning in robotics: a review of control principles. Mechatronics 77:102576CrossRef Taylor AT, Berrueta TA, Murphey TD (2021) Active learning in robotics: a review of control principles. Mechatronics 77:102576CrossRef
59.
go back to reference Wang D, Hu M, Wang Y, Wang J, Qin H, Bian Y (2016) Model predictive control-based cooperative lane change strategy for improving traffic flow. Adv Mech Eng 8(2):1–17 Wang D, Hu M, Wang Y, Wang J, Qin H, Bian Y (2016) Model predictive control-based cooperative lane change strategy for improving traffic flow. Adv Mech Eng 8(2):1–17
Metadata
Title
Towards Learning-Based Control of Connected and Automated Vehicles: Challenges and Perspectives
Author
Alexander Katriniok
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-06780-8_15

Premium Partner