Skip to main content
Top
Published in: Computational Mechanics 4/2013

01-10-2013 | Original Paper

Towards the stabilization of the low density elements in topology optimization with large deformation

Authors: Ricardo Doll Lahuerta, Eduardo T. Simões, Eduardo M. B. Campello, Paulo M. Pimenta, Emilio C. N. Silva

Published in: Computational Mechanics | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH
2.
go back to reference Armero F, Love E (2003) An arbitrary Lagrangian–Eulerian finite element method for finite strain plasticity. Int J Numer Methods Eng 57(4):471–508MathSciNetCrossRefMATH Armero F, Love E (2003) An arbitrary Lagrangian–Eulerian finite element method for finite strain plasticity. Int J Numer Methods Eng 57(4):471–508MathSciNetCrossRefMATH
3.
go back to reference Ball JM (1943) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403CrossRef Ball JM (1943) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403CrossRef
4.
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:192–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:192–202CrossRef
5.
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
7.
go back to reference Bertran A (2008) Elasticity and plasticity of large deformation, an introduction, 2nd edn. Springer, Berlin Bertran A (2008) Elasticity and plasticity of large deformation, an introduction, 2nd edn. Springer, Berlin
8.
go back to reference Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, CambridgeCrossRefMATH Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, CambridgeCrossRefMATH
10.
go back to reference Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid void topology optimization. Struct Multidiscip Optim 30(6):428–436MathSciNetCrossRef Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid void topology optimization. Struct Multidiscip Optim 30(6):428–436MathSciNetCrossRef
11.
go back to reference Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
12.
go back to reference Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10): 1413–1430CrossRefMATH Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10): 1413–1430CrossRefMATH
13.
go back to reference Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237 Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237
14.
go back to reference Buhl T, Pedersen C, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen C, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
15.
go back to reference Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518CrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518CrossRefMATH
16.
go back to reference Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553CrossRefMATH Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553CrossRefMATH
17.
go back to reference Ciarlet PG (1988) Mathematical elasticity, vol 1, 1st edn. Elsevier, AmsterdamMATH Ciarlet PG (1988) Mathematical elasticity, vol 1, 1st edn. Elsevier, AmsterdamMATH
18.
go back to reference Dacorogna B (2000) Direct methods in the calculus of variations, vol 78, 2nd edn. Elsevier, Amsterdam Dacorogna B (2000) Direct methods in the calculus of variations, vol 78, 2nd edn. Elsevier, Amsterdam
19.
go back to reference Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRef
20.
go back to reference Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79:1977–1985CrossRef Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79:1977–1985CrossRef
21.
go back to reference Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua, vol 1, 1st edn. Cambridge University Press, CambridgeCrossRef Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua, vol 1, 1st edn. Cambridge University Press, CambridgeCrossRef
23.
go back to reference Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132:117–134MathSciNetCrossRefMATH Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132:117–134MathSciNetCrossRefMATH
24.
go back to reference Kawamoto A (2003) Stabilization of geometrically nonlinear topology optimization by the Levenberg–Marquardt method. Struct Multidiscip Optim 37(4):429–433CrossRef Kawamoto A (2003) Stabilization of geometrically nonlinear topology optimization by the Levenberg–Marquardt method. Struct Multidiscip Optim 37(4):429–433CrossRef
25.
go back to reference Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30(6):459–476MathSciNetCrossRefMATH Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30(6):459–476MathSciNetCrossRefMATH
26.
go back to reference Klarbring A, Stromberg N (2012) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47:37–48 Klarbring A, Stromberg N (2012) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47:37–48
27.
go back to reference Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech A 25(2):199–214MathSciNetCrossRefMATH Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech A 25(2):199–214MathSciNetCrossRefMATH
28.
go back to reference Kuritz SP, Fleury C (1989) Mixed variable structural optimization ung convex linearization techniques. Eng Optim 15:27–41CrossRef Kuritz SP, Fleury C (1989) Mixed variable structural optimization ung convex linearization techniques. Eng Optim 15:27–41CrossRef
29.
go back to reference Morrey CB Jr (1952) Quasi-convexity and the lower semicontinuity of multiple integrals. Pac J Math 2:25–53 Morrey CB Jr (1952) Quasi-convexity and the lower semicontinuity of multiple integrals. Pac J Math 2:25–53
30.
go back to reference Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 22:2161–2172 Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 22:2161–2172
31.
go back to reference Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705CrossRefMATH Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705CrossRefMATH
32.
go back to reference Penzler P, Rumpf M, Wirth B (2012) A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM Control Optim Calc Var 18:229–258MathSciNetCrossRefMATH Penzler P, Rumpf M, Wirth B (2012) A phase-field model for compliance shape optimization in nonlinear elasticity. ESAIM Control Optim Calc Var 18:229–258MathSciNetCrossRefMATH
34.
go back to reference Raoult A (1986) Non-polyconvexity of the stored energy function of a Saint Venant–Kirchhoff material. Apl Mat 31:417–419 Raoult A (1986) Non-polyconvexity of the stored energy function of a Saint Venant–Kirchhoff material. Apl Mat 31:417–419
35.
go back to reference Reddy JN (2004) An introduction to nonlinear finite element analysis, 1st edn. Oxford University Press, New YorkCrossRefMATH Reddy JN (2004) An introduction to nonlinear finite element analysis, 1st edn. Oxford University Press, New YorkCrossRefMATH
36.
go back to reference Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(2):250–252CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(2):250–252CrossRef
37.
go back to reference Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9):1171–1202CrossRefMATH Schillinger D, Düster A, Rank E (2012) The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89(9):1171–1202CrossRefMATH
38.
go back to reference Simo JC, Hughes TRJ (1991) Plasticity and viscoplasticity: numerical analysis and computational aspects. Springer, Berlin Simo JC, Hughes TRJ (1991) Plasticity and viscoplasticity: numerical analysis and computational aspects. Springer, Berlin
39.
go back to reference Stegmann J, Lund E (2004) Nonlinear topology optimization of layered shell structures. Struct Multidiscip Optim 29(5):349–360CrossRef Stegmann J, Lund E (2004) Nonlinear topology optimization of layered shell structures. Struct Multidiscip Optim 29(5):349–360CrossRef
40.
41.
go back to reference Treloar LRG (1943) The elasticity of a network of long chain molecules-i. Trans Faraday Soc 39:36–41CrossRef Treloar LRG (1943) The elasticity of a network of long chain molecules-i. Trans Faraday Soc 39:36–41CrossRef
42.
go back to reference Wriggers P (2008) Nonlinear finite element methods, 1st edn. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods, 1st edn. Springer, BerlinMATH
43.
go back to reference Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009 Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009
44.
go back to reference Yuge K (1999) Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. Struct Optim 17:286–299CrossRef Yuge K (1999) Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. Struct Optim 17:286–299CrossRef
Metadata
Title
Towards the stabilization of the low density elements in topology optimization with large deformation
Authors
Ricardo Doll Lahuerta
Eduardo T. Simões
Eduardo M. B. Campello
Paulo M. Pimenta
Emilio C. N. Silva
Publication date
01-10-2013
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 4/2013
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0843-x

Other articles of this Issue 4/2013

Computational Mechanics 4/2013 Go to the issue