Skip to main content
Top

2021 | OriginalPaper | Chapter

4. Transceivers for the Fourth Industrial Revolution. Millimeter-Wave Low-Noise Amplifiers and Power Amplifiers

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, a review is presented on receiver subsystem-level of the low noise amplifier (LNA) in a millimeter-wave (mm-Wave)-compatible fifth-generation (5G) transceiver to identify the challenges and limitations of this subsystem at microwave operation (referring specifically in this context to centimeter-wave (3–30 GHz) and mm-Wave (30–300 GHz) operation. In this chapter, the expressions mm-Wave and microwave operation are used interchangeably and this includes mm-Wave frequencies. An overview of the considerations of the power amplifier (PA) in the transmitting front-end is correspondingly presented in this chapter, with a similar analysis of its microwave operation for 5G communications. Although the 5G specification allows for various options for carrier modulation, power levels, data rates and other capabilities as reviewed in Chap. 1 of this book, many of the performance characteristics are derived from the transmitter and receiver front-ends, more specifically the quality of the operation of the LNA and the PA. The LNA is responsible for receiving a weak, noisy signal and (ideally linearly and efficiently) amplifying this signal to a usable level without adding noise. Numerous LNAs have been used that are specifically designed for lower-GHz operation (such as for the 2.4 GHz and 5 GHz bands), but difficult operation in the mm-Wave 5G domain increases the complexity of these circuits significantly. Not only is it necessary for the architecture and topology of the LNA to be optimized for mm-Wave operation; the process technology and transistor type should also be considered based on their merits that are applicable and required for a specific application. Improvements on technologies such as “complementary metal-oxide semiconductor (CMOS), bipolar CMOS silicon germanium (SiGe), silicon-on-insulator and gallium arsenide field-effect transistors” are being researched to improve LNA performance from process level through inherent characteristics of the materials, such as leakage currents and electron mobility. References in this chapter to the process technologies are made for the subsystems being reviewed, and a detailed summary of the benefits and drawbacks of the various processes is presented in Lambrechts and Sinha [16]. In this chapter, a review of the fundamentals of LNAs and PAs is presented, along with an analysis on circuit level of the architectures that are typically used for high-frequency operation. The scope of this chapter is limited to describing the performance aspects of the LNA and the PA in terms of their architecture. This technical overview allows the reader to understand the performance limitations when designing transceiver subsystems for 5G communications; the overview does not aim to derive all performance metrics, as this has been reported in various works, referred to throughout this chapter. The subsequent chapters of this book focus on a techno-economic perspective of 5G the fourth industrial revolution, concentrating on emerging markets. Thorough understanding of the limitations and complexities of microwave circuit design is encouraged to avoid underestimating the skills required from researchers and engineers to implement and sustain the technology in these markets. Together with Chap. 2 of this book, the subsystems that are required to process high-frequency signals within a mm-Wave 5G communications system are therefore identified and reviewed. This provides the necessary background to implement these types of systems in preparation for big data communications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ali SN, Agarwal P, Gopal S, Mirabbasi S, Heo D (2019) A 25–35 GHz neutralized continuous Class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE. IEEE Trans Circuits Syst I Regul Pap 66(2):834–847 Ali SN, Agarwal P, Gopal S, Mirabbasi S, Heo D (2019) A 25–35 GHz neutralized continuous Class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE. IEEE Trans Circuits Syst I Regul Pap 66(2):834–847
2.
go back to reference Almusallam S, Ashkanani A (2019) Differential amplifier using CMOS technology. Int J Eng Res Appl 9(2) (Series-1):31–37 Almusallam S, Ashkanani A (2019) Differential amplifier using CMOS technology. Int J Eng Res Appl 9(2) (Series-1):31–37
3.
go back to reference Daniel L, Terrovitis M (1999) A broadband low-noise-amplifier. EECS217-Microwave circuit design projects, University of California at Berkeley Daniel L, Terrovitis M (1999) A broadband low-noise-amplifier. EECS217-Microwave circuit design projects, University of California at Berkeley
4.
go back to reference Das T (2013) Practical considerations for low noise amplifier design. White Paper: Freescale Semiconductor. Rev. 0, 5/2013 Das T (2013) Practical considerations for low noise amplifier design. White Paper: Freescale Semiconductor. Rev. 0, 5/2013
5.
go back to reference Doan CH, Emami S, Niknejad AM, Broderson RW (2005) Millimeter-wave CMOS design. IEEE J Solid-State Circuits 40(1):144–155CrossRef Doan CH, Emami S, Niknejad AM, Broderson RW (2005) Millimeter-wave CMOS design. IEEE J Solid-State Circuits 40(1):144–155CrossRef
6.
go back to reference Fan X (2007). High performance building blocks for wireless receiver. Multi-stage amplifiers and low noise amplifiers. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, December 2007 Fan X (2007). High performance building blocks for wireless receiver. Multi-stage amplifiers and low noise amplifiers. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, December 2007
7.
go back to reference Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley Gray PR, Hurst PJ, Lewis SH, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley
8.
go back to reference Hasani JY (2008) Design of radiofrequency front-end module for “Smart Dust” sensor network. Doctoral Dissertation, Université Joseph-Fourier, Grenoble Hasani JY (2008) Design of radiofrequency front-end module for “Smart Dust” sensor network. Doctoral Dissertation, Université Joseph-Fourier, Grenoble
9.
go back to reference Hedayati MK, Abdipour A, Shirazi RS, Centipede C, Staszewski RB (2018) A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans Circuits Syst II Express Briefs 65(10):1460–1464 Hedayati MK, Abdipour A, Shirazi RS, Centipede C, Staszewski RB (2018) A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans Circuits Syst II Express Briefs 65(10):1460–1464
10.
go back to reference Hu S, Wang F, Wang H (2019) A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications. IEEE J Solid-State Circuits 54(6):1586–1599CrossRef Hu S, Wang F, Wang H (2019) A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications. IEEE J Solid-State Circuits 54(6):1586–1599CrossRef
11.
go back to reference Huang BJ, Lin KY, Wang H (2009) Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology. IEEE Trans Microwave Theory Techn 57(12):3049–3059CrossRef Huang BJ, Lin KY, Wang H (2009) Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology. IEEE Trans Microwave Theory Techn 57(12):3049–3059CrossRef
14.
go back to reference Kusama MS, Shanthala S, Raj CP (2018) Design of common source low noise amplifier with inductive source degeneration in deep submicron CMOS processes. Int J Appl Eng Res 13(6):4118–4123 Kusama MS, Shanthala S, Raj CP (2018) Design of common source low noise amplifier with inductive source degeneration in deep submicron CMOS processes. Int J Appl Eng Res 13(6):4118–4123
15.
go back to reference Lambrechts JW, Sinha S (2017) SiGe-based re-engineering of electronic warfare subsystems. Springer International Publishing. ISBN 978-3-319-47402-1 Lambrechts JW, Sinha S (2017) SiGe-based re-engineering of electronic warfare subsystems. Springer International Publishing. ISBN 978-3-319-47402-1
16.
go back to reference Lee S, Kang S, Hong S (2019) A 28-GHz CMOS linear power amplifier with low output phase variation over dual power modes. IEEE Microwave Wirel Compon Lett 29(8):551–553CrossRef Lee S, Kang S, Hong S (2019) A 28-GHz CMOS linear power amplifier with low output phase variation over dual power modes. IEEE Microwave Wirel Compon Lett 29(8):551–553CrossRef
17.
go back to reference Lee HS, Perrot MH (2005) High speed communication circuits and systems. Low noise amplifiers. Massachusetts Institute of Technology Lee HS, Perrot MH (2005) High speed communication circuits and systems. Low noise amplifiers. Massachusetts Institute of Technology
18.
go back to reference Li S, Hsu SSH, Zhang J, Huang K (2018) Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications. IEEE Trans Microw Theory Tech 66(12):5676–5684CrossRef Li S, Hsu SSH, Zhang J, Huang K (2018) Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications. IEEE Trans Microw Theory Tech 66(12):5676–5684CrossRef
19.
go back to reference Lie DYC, Mayeda JC, Li Y, Lopez J (2018). A review of 5G power amplifier design at cm-Wave and mm-Wave frequencies. Wirel Commun Mobile Comput, Article ID 6793814, 1–16 Lie DYC, Mayeda JC, Li Y, Lopez J (2018). A review of 5G power amplifier design at cm-Wave and mm-Wave frequencies. Wirel Commun Mobile Comput, Article ID 6793814, 1–16
20.
go back to reference Lo YT, Kiang JF (2011) Design of wideband LNA using parallel-to-series resonant matching network between common-gate and common-source stages. IEEE Trans Microwave Theory Technol 59(9):2285–2294CrossRef Lo YT, Kiang JF (2011) Design of wideband LNA using parallel-to-series resonant matching network between common-gate and common-source stages. IEEE Trans Microwave Theory Technol 59(9):2285–2294CrossRef
21.
go back to reference Lo C, Lin C, Wang H (2006). A miniature V-band 3-stage cascode LNA in 0.13 µm CMOS. In: IEEE solid-state circuits conference, pp 1254–1263, 6–9 Feb 2006 Lo C, Lin C, Wang H (2006). A miniature V-band 3-stage cascode LNA in 0.13 µm CMOS. In: IEEE solid-state circuits conference, pp 1254–1263, 6–9 Feb 2006
22.
go back to reference Lu F, Xia L (2008) A CMOS LNA with noise cancellation for 3.1–10.6 GHz UWB receivers using current-reuse configuration. In: Proceedings of the 4th IEEE international conference on circuits and systems for communications (ICCSC 2008), pp 824–827 Lu F, Xia L (2008) A CMOS LNA with noise cancellation for 3.1–10.6 GHz UWB receivers using current-reuse configuration. In: Proceedings of the 4th IEEE international conference on circuits and systems for communications (ICCSC 2008), pp 824–827
23.
go back to reference Lv G, Chen W, Liu X, Feng Z (2019) A dual-band GaN MMIC power amplifier with hybrid operating modes for 5G application. IEEE Microwave Wirel Compon Lett 29(3):228–230CrossRef Lv G, Chen W, Liu X, Feng Z (2019) A dual-band GaN MMIC power amplifier with hybrid operating modes for 5G application. IEEE Microwave Wirel Compon Lett 29(3):228–230CrossRef
24.
go back to reference Pepe D, Zito D (2015) 32 dB gain 28 nm bulk CMOS W-band LNA. IEEE Microwave Compon Lett 25(1):55–57CrossRef Pepe D, Zito D (2015) 32 dB gain 28 nm bulk CMOS W-band LNA. IEEE Microwave Compon Lett 25(1):55–57CrossRef
25.
go back to reference Qin P, Xue Q (2017) Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microwave Compon Lett 27(7):657–659CrossRef Qin P, Xue Q (2017) Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microwave Compon Lett 27(7):657–659CrossRef
26.
go back to reference Qin P, Xue Q (2017) Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microwave Compon Lett 27(6):587–589CrossRef Qin P, Xue Q (2017) Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microwave Compon Lett 27(6):587–589CrossRef
27.
go back to reference Rollet J (1962) Stability and power-gain invariants of linear twoports. IRE Trans Circuit Theory. 9(1):29–32CrossRef Rollet J (1962) Stability and power-gain invariants of linear twoports. IRE Trans Circuit Theory. 9(1):29–32CrossRef
28.
go back to reference Shakib S, Dunworth J, Aparin V, Entesari K (2019) mmWave CMOS power amplifiers for 5G cellular communication. IEEE Commun Mag 57(1):98–105CrossRef Shakib S, Dunworth J, Aparin V, Entesari K (2019) mmWave CMOS power amplifiers for 5G cellular communication. IEEE Commun Mag 57(1):98–105CrossRef
29.
go back to reference Shakib S, Park H, Dunworth J, Aparin V, Entesari K (2016) A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE J Solid-State Circuits 51(12):3020–3036CrossRef Shakib S, Park H, Dunworth J, Aparin V, Entesari K (2016) A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE J Solid-State Circuits 51(12):3020–3036CrossRef
30.
go back to reference Sumathi M, Malarviszhi S (2011) Performance comparison of RF CMOS low noise amplifier in 0.18-µm technology scale. Int J VLSI Des Commun Syst 2(2):45–54 Sumathi M, Malarviszhi S (2011) Performance comparison of RF CMOS low noise amplifier in 0.18-µm technology scale. Int J VLSI Des Commun Syst 2(2):45–54
31.
go back to reference Vasjanov A, Barzdenas V (2018) A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks. Electronics 7(11):1–17CrossRef Vasjanov A, Barzdenas V (2018) A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks. Electronics 7(11):1–17CrossRef
32.
go back to reference Vigilante M, Reynaert P (2016) A 68.1-to-96.4 GHz variable-gain low-noise amplifier in 28 nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), San Francisco, CA, USA, pp 360–362 Vigilante M, Reynaert P (2016) A 68.1-to-96.4 GHz variable-gain low-noise amplifier in 28 nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), San Francisco, CA, USA, pp 360–362
33.
go back to reference Wu C, Chen P (2007) A low power V-band low noise amplifier using 0.13 μm CMOS technology. In: Proceedings of the IEEE international conference on electronics, circuits and systems (ICECS 2007), pp 1328–1331, Dec 2007 Wu C, Chen P (2007) A low power V-band low noise amplifier using 0.13 μm CMOS technology. In: Proceedings of the IEEE international conference on electronics, circuits and systems (ICECS 2007), pp 1328–1331, Dec 2007
34.
go back to reference Yao T, Gordon M, Yau K, Yang KT, Voinigescu SP (2006) 60-GHz PA and LNA in 90-nm RF-CMOS. In: Proceedings of the IEEE radio frequency integrated circuits symposium (RFIC2006), p 4 Yao T, Gordon M, Yau K, Yang KT, Voinigescu SP (2006) 60-GHz PA and LNA in 90-nm RF-CMOS. In: Proceedings of the IEEE radio frequency integrated circuits symposium (RFIC2006), p 4
35.
go back to reference Yu Y, Liu H, Wu Y, Kang K (2017) A 54.4–90 GHz low-noise amplifier in 65-nm CMOS. IEEE J Solid-State Circuits 52(11):2892–2904 Yu Y, Liu H, Wu Y, Kang K (2017) A 54.4–90 GHz low-noise amplifier in 65-nm CMOS. IEEE J Solid-State Circuits 52(11):2892–2904
36.
go back to reference Zhao C, Park B, Cho Y, Kim B (2017) Analysis and design of CMOS Doherty power amplifier using voltage combining method. IEEE Access 5:5001–5012CrossRef Zhao C, Park B, Cho Y, Kim B (2017) Analysis and design of CMOS Doherty power amplifier using voltage combining method. IEEE Access 5:5001–5012CrossRef
Metadata
Title
Transceivers for the Fourth Industrial Revolution. Millimeter-Wave Low-Noise Amplifiers and Power Amplifiers
Authors
Wynand Lambrechts
Saurabh Sinha
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-50472-4_4