Skip to main content
Top

2014 | OriginalPaper | Chapter

8. Transformation Electromagnetics Inspired Lens Designs and Associated Metamaterial Implementations for Highly Directive Radiation

Authors : Douglas H. Werner, Zhi Hao Jiang, Jeremiah P. Turpin, Qi Wu, Micah D. Gregory

Published in: Transformation Electromagnetics and Metamaterials

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the transformation electromagnetics (TE) approach for achieving highly directive radiation is introduced and demonstrated by both numerical simulations and experimental results obtained from laboratory prototypes. In addition to conventional approaches for designing directive antennas, the recently developed metamaterial-related techniques, such as the electromagnetic bandgap (EBG) structures, zero-index metamaterials, and transformation optics (TO), are reviewed. In particular, several coordinate transformations which can provide simplified material parameters are proposed, including the conformal mapping, quasi-conformal (QC) mapping, geometry-similar transformation, and the uniaxial media simplification method. All of these techniques are capable of achieving a certain degree of simplification in the transformed material parameters without sacrificing the device performance. The design and demonstration of various beam collimating devices illustrate their unique properties and suitability for different applications such as in compact wireless systems. In all, these TE-enabled lenses with simple material parameters are expected to find widespread applications in the fields of microwave antennas as well as optical nanoantennas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barrow WL, Greene FM (1938) Rectangular hollow-pipe radiators. Proc IEEE 26:1498–1519 Barrow WL, Greene FM (1938) Rectangular hollow-pipe radiators. Proc IEEE 26:1498–1519
2.
go back to reference Barrow WL, Chu LJ (1939) Theory of the electromagnetic horn. Proc IEEE 27:51–64 Barrow WL, Chu LJ (1939) Theory of the electromagnetic horn. Proc IEEE 27:51–64
3.
go back to reference Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, Hoboken
4.
go back to reference Burnside W, Chuang C (1982) An aperture-matched horn design. IEEE Trans Antennas Propag 30:790–796CrossRef Burnside W, Chuang C (1982) An aperture-matched horn design. IEEE Trans Antennas Propag 30:790–796CrossRef
5.
go back to reference Lawrie RE, Peters L (1965) Modification of horn antennas for low sidelobe levels. In: Proceedings of International Symposium Antennas Propagation, pp 289–293 Lawrie RE, Peters L (1965) Modification of horn antennas for low sidelobe levels. In: Proceedings of International Symposium Antennas Propagation, pp 289–293
6.
go back to reference Love AW (1978) Reflector antennas. IEEE Press, New York Love AW (1978) Reflector antennas. IEEE Press, New York
7.
go back to reference Dolph CL (1946) A current distribution for broadside arrays which optimizes the relationship between beam-width and side-lobe level. Proc IRE 34:335–348CrossRef Dolph CL (1946) A current distribution for broadside arrays which optimizes the relationship between beam-width and side-lobe level. Proc IRE 34:335–348CrossRef
8.
go back to reference Foster RM (1926) Directive diagrams of antenna arrays. Bell Syst Tech J 5:292–307 Foster RM (1926) Directive diagrams of antenna arrays. Bell Syst Tech J 5:292–307
9.
go back to reference Gregory MD, Petko JS, Spence TG, Werner DH (2010) Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays. IEEE Antennas Propag Mag 52:28–45CrossRef Gregory MD, Petko JS, Spence TG, Werner DH (2010) Nature-inspired design techniques for ultra-wideband aperiodic antenna arrays. IEEE Antennas Propag Mag 52:28–45CrossRef
10.
go back to reference Hansen WW, Woodyard JR (1938) A new principle in directional antenna design. Proc IRE 26:333–345CrossRef Hansen WW, Woodyard JR (1938) A new principle in directional antenna design. Proc IRE 26:333–345CrossRef
11.
go back to reference King RWP, Sandler SS (1964) The theory of endfire arrays. IEEE Trans Antennas Propag 12:276–280CrossRef King RWP, Sandler SS (1964) The theory of endfire arrays. IEEE Trans Antennas Propag 12:276–280CrossRef
12.
go back to reference Yagi H, Uda S (1926) Projector of the sharpest beam of electric waves. In: Proceedings of the imperial academy of Japan, vol 2, pp 49–52 Yagi H, Uda S (1926) Projector of the sharpest beam of electric waves. In: Proceedings of the imperial academy of Japan, vol 2, pp 49–52
14.
15.
go back to reference Martindale JPA (1953) Lens aerials at centimetric wavelengths: a critical survey of the present position. J British IRE 13:243–259 Martindale JPA (1953) Lens aerials at centimetric wavelengths: a critical survey of the present position. J British IRE 13:243–259
16.
go back to reference Holt FS, Mayer A (1957) A design procedure for dielectric microwave lenses of large aperture ratio and large scanning angle. IRE Trans Antennas Propag 5:25–30CrossRef Holt FS, Mayer A (1957) A design procedure for dielectric microwave lenses of large aperture ratio and large scanning angle. IRE Trans Antennas Propag 5:25–30CrossRef
17.
go back to reference Luneberg RK (1944) Mathematical theory of optics. Brown University Press, ProvidenceMATH Luneberg RK (1944) Mathematical theory of optics. Brown University Press, ProvidenceMATH
18.
go back to reference Rotman W, Turner R (1963) Wide-angle microwave lens for line source applications. IEEE Trans Antennas Propag 11:623–632CrossRef Rotman W, Turner R (1963) Wide-angle microwave lens for line source applications. IEEE Trans Antennas Propag 11:623–632CrossRef
19.
go back to reference Rinehart RF (1948) A solution of the problem of rapid scanning for radar antennae. J Appl Phys 19:860–862CrossRef Rinehart RF (1948) A solution of the problem of rapid scanning for radar antennae. J Appl Phys 19:860–862CrossRef
20.
go back to reference Alitalo P, Luukkonen O, Vehmas J, Tretyakov SA (2008) Impedance-matched microwave lens. IEEE Antennas Wireless Propag Lett 7:187–191CrossRef Alitalo P, Luukkonen O, Vehmas J, Tretyakov SA (2008) Impedance-matched microwave lens. IEEE Antennas Wireless Propag Lett 7:187–191CrossRef
21.
go back to reference Chang K (2005) Encyclopedia of RF and microwave engineering. Wiley, HobokenCrossRef Chang K (2005) Encyclopedia of RF and microwave engineering. Wiley, HobokenCrossRef
22.
go back to reference Akalin T, Danglot J, Vanbésien O, Lippens D (2002) A highly directive dipole antenna embedded in a Fabry-Pérot cavity. IEEE Microwave Wirel Compon Lett 12:48–50CrossRef Akalin T, Danglot J, Vanbésien O, Lippens D (2002) A highly directive dipole antenna embedded in a Fabry-Pérot cavity. IEEE Microwave Wirel Compon Lett 12:48–50CrossRef
23.
go back to reference Guérin N, Enoch S, Tayeb G, Sabouroux P, Vincent P, Legay H (2006) A metallic Fabry-Pérot directive antenna. IEEE Trans Antennas Propag 54:220–224CrossRef Guérin N, Enoch S, Tayeb G, Sabouroux P, Vincent P, Legay H (2006) A metallic Fabry-Pérot directive antenna. IEEE Trans Antennas Propag 54:220–224CrossRef
24.
go back to reference Costa F, Carrubba E, Monorchio A, Manara G (2008) Multi-frequency highly directive Fabry-Pérot based antenna. In: Proceedings of IEEE International Symposium Antennas Propagation Costa F, Carrubba E, Monorchio A, Manara G (2008) Multi-frequency highly directive Fabry-Pérot based antenna. In: Proceedings of IEEE International Symposium Antennas Propagation
25.
go back to reference Yablonovitch E (1993) Photonic band-gap structures. J Opt Soc Am 10:283–295 Yablonovitch E (1993) Photonic band-gap structures. J Opt Soc Am 10:283–295
26.
go back to reference Sievenpiper D, Zhang L, Jimenez Broas RF, Alexópolous NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47:2059–2074CrossRef Sievenpiper D, Zhang L, Jimenez Broas RF, Alexópolous NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47:2059–2074CrossRef
27.
go back to reference Yang F, Rahmat-Samii Y (2003) Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans Antennas Propag 51:2691–2703CrossRef Yang F, Rahmat-Samii Y (2003) Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans Antennas Propag 51:2691–2703CrossRef
28.
go back to reference Kern DJ, Werner DH, Monorchio A, Lanuzza L, Wilhelm MJ (2005) The design synthesis of multi-band artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans Antennas Propag 53:8–17CrossRef Kern DJ, Werner DH, Monorchio A, Lanuzza L, Wilhelm MJ (2005) The design synthesis of multi-band artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans Antennas Propag 53:8–17CrossRef
29.
go back to reference Yang F, Rahmat-Samii Y (2003) Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antennas Propag 51:2936–2946CrossRef Yang F, Rahmat-Samii Y (2003) Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antennas Propag 51:2936–2946CrossRef
30.
go back to reference Thèvenot M, Cheype C, Reineix A, Jecko B (1999) Directive photonic-bandgap antennas. IEEE Trans Microw Theory Tech 47:2115–2122CrossRef Thèvenot M, Cheype C, Reineix A, Jecko B (1999) Directive photonic-bandgap antennas. IEEE Trans Microw Theory Tech 47:2115–2122CrossRef
31.
go back to reference Cheype C, Serier C, Thèvenot M, Monédière T, Reineix A, Jecko B (2002) An electromagnetic bandgap resonator antenna. IEEE Trans Antennas Propag 50:1285–1290CrossRef Cheype C, Serier C, Thèvenot M, Monédière T, Reineix A, Jecko B (2002) An electromagnetic bandgap resonator antenna. IEEE Trans Antennas Propag 50:1285–1290CrossRef
32.
go back to reference Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRef Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRef
33.
go back to reference Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792CrossRef Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792CrossRef
34.
go back to reference Soukoulis CM, Linden S, Wegener M (2007) Negative refractive index at optical wavelengths. Science 315:47–49CrossRef Soukoulis CM, Linden S, Wegener M (2007) Negative refractive index at optical wavelengths. Science 315:47–49CrossRef
35.
go back to reference Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRef Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRef
36.
go back to reference Scarborough CP, Jiang ZH, Werner DH, Rivero-Baleine C, Drake C (2012) Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl Phys Lett 101:014101/1–3 Scarborough CP, Jiang ZH, Werner DH, Rivero-Baleine C, Drake C (2012) Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl Phys Lett 101:014101/1–3
37.
go back to reference Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 89:213902/1–4 Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 89:213902/1–4
38.
go back to reference Ziolkowski RW (2004) Propagation in the scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 70:046608/1–12 Ziolkowski RW (2004) Propagation in the scattering from a matched metamaterial having a zero index of refraction. Phys Rev E 70:046608/1–12
39.
go back to reference Kwon DH, Werner DH (2008) Low-index metamaterial designs in the visible spectrum. Opt Express 15:9267–9272CrossRef Kwon DH, Werner DH (2008) Low-index metamaterial designs in the visible spectrum. Opt Express 15:9267–9272CrossRef
40.
go back to reference Kocaman S, Aras MS, Hsieh P, McMillan JF, Biris CG, Panoiu NC, Yu MB, Kwong DL, Stein A, Wong CW (2011) Zero phase delay in negative-refractive-index photonic crystal superlattices. Nat Photon 5:499–505CrossRef Kocaman S, Aras MS, Hsieh P, McMillan JF, Biris CG, Panoiu NC, Yu MB, Kwong DL, Stein A, Wong CW (2011) Zero phase delay in negative-refractive-index photonic crystal superlattices. Nat Photon 5:499–505CrossRef
41.
go back to reference Yun S, Jiang ZH, Xu Q, Liu Z, Werner DH, Mayer TS (2012) Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6:4475–4482CrossRef Yun S, Jiang ZH, Xu Q, Liu Z, Werner DH, Mayer TS (2012) Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6:4475–4482CrossRef
42.
go back to reference Jiang ZH, Bossard JA, Wang X, Werner DH (2011) Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm. J Appl Phys 109:013515/1–11 Jiang ZH, Bossard JA, Wang X, Werner DH (2011) Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm. J Appl Phys 109:013515/1–11
43.
go back to reference Kong JA (2000) Electromagnetic wave theory. EMW Cambridge, Boston Kong JA (2000) Electromagnetic wave theory. EMW Cambridge, Boston
44.
go back to reference Bonefačić D, Hrabar S, Kvakan D (2006) Experimental investigation of radiation properties of an antenna embedded in low permittivity thin-wire-based metamaterial. Microw Opt Technol Lett 48:2581–2586CrossRef Bonefačić D, Hrabar S, Kvakan D (2006) Experimental investigation of radiation properties of an antenna embedded in low permittivity thin-wire-based metamaterial. Microw Opt Technol Lett 48:2581–2586CrossRef
45.
go back to reference Zhou R, Zhang H, Xin H (2010) Metallic wire array as low-effective index of refraction medium for directive antenna application. IEEE Trans Antennas Propag 58:79–87CrossRef Zhou R, Zhang H, Xin H (2010) Metallic wire array as low-effective index of refraction medium for directive antenna application. IEEE Trans Antennas Propag 58:79–87CrossRef
46.
go back to reference Lovat G, Burghignoli P, Capolino F, Jackson DR (2006) High directivity in low-permittivity metamaterial slabs: ray-optic vs. leaky-wave models. Microw Opt Technol Lett 48:2542–2548CrossRef Lovat G, Burghignoli P, Capolino F, Jackson DR (2006) High directivity in low-permittivity metamaterial slabs: ray-optic vs. leaky-wave models. Microw Opt Technol Lett 48:2542–2548CrossRef
47.
go back to reference Lovat G, Burghignoli G, Capolino F, Jackson DR, Wilton DR (2006) Analysis of directive radiation from a line source in a metamaterial slab with low permittivity. IEEE Trans Antennas Propag 54:1017–1030CrossRef Lovat G, Burghignoli G, Capolino F, Jackson DR, Wilton DR (2006) Analysis of directive radiation from a line source in a metamaterial slab with low permittivity. IEEE Trans Antennas Propag 54:1017–1030CrossRef
48.
go back to reference Weng Z, Song Y, Jiao Y, Zhang F (2008) A directive dual-band and dual-polarized antenna with zero index metamaterial. Microw Opt Technol Lett 50:2902–2904CrossRef Weng Z, Song Y, Jiao Y, Zhang F (2008) A directive dual-band and dual-polarized antenna with zero index metamaterial. Microw Opt Technol Lett 50:2902–2904CrossRef
49.
go back to reference Xu H, Zhao Z, Lv Y, Du C, Luo X (2008) Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. J Infrared Mill Terahz Waves 29:493–498CrossRef Xu H, Zhao Z, Lv Y, Du C, Luo X (2008) Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. J Infrared Mill Terahz Waves 29:493–498CrossRef
50.
go back to reference Ju J, Kim D, Lee WJ, Choi JI (2009) Wideband high-gain antenna using metamaterial superstrate with the zero refractive index. Microw Opt Technol Lett 51:1973–1976CrossRef Ju J, Kim D, Lee WJ, Choi JI (2009) Wideband high-gain antenna using metamaterial superstrate with the zero refractive index. Microw Opt Technol Lett 51:1973–1976CrossRef
51.
go back to reference Zhou H, Qu S, Pei Z, Yang Y, Zhang J, Wang J, Ma H, Gu C, Wang X, Xu Z, Peng W, Bai P (2010) A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates. JEMWA 24:1387–1396 Zhou H, Qu S, Pei Z, Yang Y, Zhang J, Wang J, Ma H, Gu C, Wang X, Xu Z, Peng W, Bai P (2010) A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates. JEMWA 24:1387–1396
52.
go back to reference Zhao G, Jiao YC, Zhang F, Zhang FS (2010) Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate. Microw Opt Technol Lett 52:1855–1858CrossRef Zhao G, Jiao YC, Zhang F, Zhang FS (2010) Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate. Microw Opt Technol Lett 52:1855–1858CrossRef
53.
go back to reference Xiao Z, Xu H (2008) Low refractive metamaterials for gain enhancement of horn antenna. J Infrared Mill Terahz Waves 30:225–232CrossRef Xiao Z, Xu H (2008) Low refractive metamaterials for gain enhancement of horn antenna. J Infrared Mill Terahz Waves 30:225–232CrossRef
54.
go back to reference Kim D, Choi J (2010) Analysis of antenna gain enhancement with a new planar metamaterial superstrate: an effective medium and a Fabry-Pérot resonance approach. J Infrared Mill Terahz Waves 31:1289–1303CrossRef Kim D, Choi J (2010) Analysis of antenna gain enhancement with a new planar metamaterial superstrate: an effective medium and a Fabry-Pérot resonance approach. J Infrared Mill Terahz Waves 31:1289–1303CrossRef
55.
go back to reference Zhou H, Pei Z, Qu S, Zhang S, Wang J, Li Q, Xu Z (2009) A planar zero-index metamaterial for directive emission. JEMWA 23:953–962 Zhou H, Pei Z, Qu S, Zhang S, Wang J, Li Q, Xu Z (2009) A planar zero-index metamaterial for directive emission. JEMWA 23:953–962
56.
go back to reference Zhu LX, Wang FM, Jiang ZY, Shen T, Ran LF (2009) Directive emission based on a new type of metamaterial. Microw Opt Technol Lett 51:2178–2180CrossRef Zhu LX, Wang FM, Jiang ZY, Shen T, Ran LF (2009) Directive emission based on a new type of metamaterial. Microw Opt Technol Lett 51:2178–2180CrossRef
57.
go back to reference Wu BI, Wang W, Pacheco J, Chen X, Lu J, Grzegorczyk TM, Kong JA, Kao P, Theophelakes PA, Hogan MJ (2008) Anisotropic metamaterials as antenna substrate to enhance directivity. Microw Opt Technol Lett 48:680–683CrossRef Wu BI, Wang W, Pacheco J, Chen X, Lu J, Grzegorczyk TM, Kong JA, Kao P, Theophelakes PA, Hogan MJ (2008) Anisotropic metamaterials as antenna substrate to enhance directivity. Microw Opt Technol Lett 48:680–683CrossRef
58.
go back to reference Yuan Y, Shen L, Ran L, Jiang T, Huangfu J, Kong JA (2008) Directive emission based on anisotropic metamaterials. Phys Rev A 77:053821/1–4 Yuan Y, Shen L, Ran L, Jiang T, Huangfu J, Kong JA (2008) Directive emission based on anisotropic metamaterials. Phys Rev A 77:053821/1–4
59.
go back to reference Ma YG, Wang P, Chen X, Ong CK (2009) Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial. Appl Phys Lett 94:044107/1–3 Ma YG, Wang P, Chen X, Ong CK (2009) Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial. Appl Phys Lett 94:044107/1–3
60.
go back to reference Zhou B, Cui TJ (2011) Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel Propag Lett 10:326–329CrossRef Zhou B, Cui TJ (2011) Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel Propag Lett 10:326–329CrossRef
61.
go back to reference Zhou B, Li H, Zou XY, Cui TJ (2011) Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials. PIER 120:235–247 Zhou B, Li H, Zou XY, Cui TJ (2011) Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials. PIER 120:235–247
62.
go back to reference Wu BI, Wang W, Pacheco J, Chen X, Grzegorczyk TM, Kong JA (2005) A study of using metamaterials as antenna substrate to enhance gain. PIER 51:295–328CrossRef Wu BI, Wang W, Pacheco J, Chen X, Grzegorczyk TM, Kong JA (2005) A study of using metamaterials as antenna substrate to enhance gain. PIER 51:295–328CrossRef
65.
go back to reference Kwon DH, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52:24–46CrossRef Kwon DH, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52:24–46CrossRef
66.
go back to reference Zhang JJ, Luo Y, Xi S, Chen HS, Ran LX, Wu BI, Kong JA (2008) Directive emission obtained by coordinate transformation. PIER 81:437–446CrossRef Zhang JJ, Luo Y, Xi S, Chen HS, Ran LX, Wu BI, Kong JA (2008) Directive emission obtained by coordinate transformation. PIER 81:437–446CrossRef
67.
go back to reference Kwon DH, Werner DH (2008) Transformation optical designs for wave collimators flat lenses and right-angle bends. N J Phys 10:115023/1–13 Kwon DH, Werner DH (2008) Transformation optical designs for wave collimators flat lenses and right-angle bends. N J Phys 10:115023/1–13
68.
go back to reference Jiang WX, Cui TJ, Ma HF, Zhou XY, Cheng Q (2008) Cylindrical-to-plane-wave conversion via embedded transformation. Appl Phys Lett 92:261903/1–3 Jiang WX, Cui TJ, Ma HF, Zhou XY, Cheng Q (2008) Cylindrical-to-plane-wave conversion via embedded transformation. Appl Phys Lett 92:261903/1–3
69.
go back to reference Jiang WX, Cui TJ, Ma HF, Yang XM, Cheng Q (2008) Layered high-gain lens antennas via discrete optical transformation. Appl Phys Lett 93:221906/1–3 Jiang WX, Cui TJ, Ma HF, Yang XM, Cheng Q (2008) Layered high-gain lens antennas via discrete optical transformation. Appl Phys Lett 93:221906/1–3
70.
go back to reference Luo Y, Zhang J, Chen H, Huangfu J, Ran L (2009) High-directivity antenna with small antenna aperture. Appl Phys Lett 95:193506/1–3 Luo Y, Zhang J, Chen H, Huangfu J, Ran L (2009) High-directivity antenna with small antenna aperture. Appl Phys Lett 95:193506/1–3
71.
go back to reference Lu W, Lin Z, Chen H, Chan CT (2009) Transformation media based super focusing antenna. J Phys D: Appl Phys 42:212002/1–4 Lu W, Lin Z, Chen H, Chan CT (2009) Transformation media based super focusing antenna. J Phys D: Appl Phys 42:212002/1–4
72.
go back to reference Cheng Q, Cui TJ (2010) Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials. J Phys D: Appl Phys 43:335406/1–6 Cheng Q, Cui TJ (2010) Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials. J Phys D: Appl Phys 43:335406/1–6
73.
go back to reference Kundtz N, Smith DR (2009) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132CrossRef Kundtz N, Smith DR (2009) Extreme-angle broadband metamaterial lens. Nat Mater 9:129–132CrossRef
74.
go back to reference Tang W, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans Antennas Propag 58:3795–3804CrossRef Tang W, Argyropoulos C, Kallos E, Song W, Hao Y (2010) Discrete coordinate transformation for designing all-dielectric flat antennas. IEEE Trans Antennas Propag 58:3795–3804CrossRef
75.
go back to reference Ma HF, Cui TJ (2010) Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun 1:124/1–7 Ma HF, Cui TJ (2010) Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun 1:124/1–7
76.
go back to reference Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244–252CrossRef Turpin JP, Massoud AT, Jiang ZH, Werner PL, Werner DH (2010) Conformal mappings to achieve simple material parameters for transformation optics devices. Opt Express 18:244–252CrossRef
77.
go back to reference Tichit PH, Burokur SN, Germain D, Lustrac A (2011) Design and experimental demonstration of a high-directive emission with transformation optics. Phys Rev B 83:155108/1–7 Tichit PH, Burokur SN, Germain D, Lustrac A (2011) Design and experimental demonstration of a high-directive emission with transformation optics. Phys Rev B 83:155108/1–7
78.
go back to reference Jiang ZH, Gregory MD, Werner DH (2011) Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission. Phys Rev B 84:165111/1–6 Jiang ZH, Gregory MD, Werner DH (2011) Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission. Phys Rev B 84:165111/1–6
79.
go back to reference Garcia-Meca C, Martinez A, Leonhardt U (2011) Engineering antenna radiation patterns via quasi-conformal mappings. Opt Express 19:23743–23750CrossRef Garcia-Meca C, Martinez A, Leonhardt U (2011) Engineering antenna radiation patterns via quasi-conformal mappings. Opt Express 19:23743–23750CrossRef
80.
go back to reference Yao K, Jiang X, Chen H (2012) Collimating lenses from non-Euclidean transformation optics. N J Phys 14:023011/1–9 Yao K, Jiang X, Chen H (2012) Collimating lenses from non-Euclidean transformation optics. N J Phys 14:023011/1–9
81.
go back to reference Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901/1–4 Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901/1–4
82.
go back to reference Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17:14872–14879CrossRef Landy NI, Padilla WJ (2009) Guiding light with conformal transformations. Opt Express 17:14872–14879CrossRef
83.
go back to reference Zeng Y, Liu J, Werner DH (2011) General properties of two-dimensional conformal transformations in electrostatics. Opt Express 19:20035–20047CrossRef Zeng Y, Liu J, Werner DH (2011) General properties of two-dimensional conformal transformations in electrostatics. Opt Express 19:20035–20047CrossRef
84.
go back to reference Zeng Y, Werner DH (2012) Two-dimensional inside-out Eaton lens: wave properties and design technique. Opt Express 20:2335–2345CrossRef Zeng Y, Werner DH (2012) Two-dimensional inside-out Eaton lens: wave properties and design technique. Opt Express 20:2335–2345CrossRef
85.
go back to reference Driscoll TA (1996) A MATLAB toolbox for Schwarz-Christoffel mapping. ACM Trans Math Soft 22:168–186MATHCrossRef Driscoll TA (1996) A MATLAB toolbox for Schwarz-Christoffel mapping. ACM Trans Math Soft 22:168–186MATHCrossRef
86.
go back to reference Schurig D, Mock JJ, Smith DR (2006) Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett 88:041109/1–3 Schurig D, Mock JJ, Smith DR (2006) Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett 88:041109/1–3
87.
go back to reference Turpin JP, Wu Q, Werner DH, Martin B, Bray M, Lier E (2012) Low cost and broadband dual-polarization metamaterial lens for directivity enhancement. IEEE Trans Antennas Propag 60:5717−5726 Turpin JP, Wu Q, Werner DH, Martin B, Bray M, Lier E (2012) Low cost and broadband dual-polarization metamaterial lens for directivity enhancement. IEEE Trans Antennas Propag 60:5717−5726
88.
go back to reference Turpin JP, Werner DH (2012) Cylindrical metamaterial lens for single-feed adaptive beamforming. In: Proceedings of IEEE International Symposium Antennas Propagation Turpin JP, Werner DH (2012) Cylindrical metamaterial lens for single-feed adaptive beamforming. In: Proceedings of IEEE International Symposium Antennas Propagation
89.
go back to reference Turpin JP, Werner DH (2012) Switchable near-zero-index magnetic metamaterial for dynamic beam-scanning lens. In: Proceedings of IEEE International Symposium Antennas Propagation Turpin JP, Werner DH (2012) Switchable near-zero-index magnetic metamaterial for dynamic beam-scanning lens. In: Proceedings of IEEE International Symposium Antennas Propagation
90.
go back to reference Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1:21/1–6 Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun 1:21/1–6
91.
go back to reference Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571CrossRef Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571CrossRef
92.
go back to reference Semouchkina E, Werner DH, Semouchkin GB, Pantano C (2010) An infrared invisibility cloak composed of glass. Appl Phys Lett 96:233503/1–3 Semouchkina E, Werner DH, Semouchkin GB, Pantano C (2010) An infrared invisibility cloak composed of glass. Appl Phys Lett 96:233503/1–3
93.
go back to reference Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339CrossRef Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three-dimensional invisibility cloak at optical wavelengths. Science 328:337–339CrossRef
94.
go back to reference Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463CrossRef Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463CrossRef
95.
go back to reference Lee J, Blair J, Tamma V, Wu Q, Rhee S, Summers C, Park W (2009) Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. Opt Express 17:12922–12928CrossRef Lee J, Blair J, Tamma V, Wu Q, Rhee S, Summers C, Park W (2009) Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. Opt Express 17:12922–12928CrossRef
96.
go back to reference Thompson NP, Soni JF, Weatherill BK (1999) Handbook of grid generation. CRC Press, Boca RatonMATH Thompson NP, Soni JF, Weatherill BK (1999) Handbook of grid generation. CRC Press, Boca RatonMATH
98.
go back to reference Tichit PH, Burokur S, Lustrac A (2009) Ultradirective antenna via transformation optics. J Appl Phys 105:104912/1–3 Tichit PH, Burokur S, Lustrac A (2009) Ultradirective antenna via transformation optics. J Appl Phys 105:104912/1–3
99.
go back to reference Kwon DH, Werner DH (2009) Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. Opt Express 17:7807–7817CrossRef Kwon DH, Werner DH (2009) Flat focusing lens designs having minimized reflection based on coordinate transformation techniques. Opt Express 17:7807–7817CrossRef
100.
go back to reference Zhang B, Luo Y, Liu X, Barbastathis G (2011) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:033901/1–4 Zhang B, Luo Y, Liu X, Barbastathis G (2011) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:033901/1–4
101.
go back to reference Chen X, Luo Y, Zhang J, Jiang K, Pendry JB, Zhang S (2011) Macroscopic invisibility cloaking of visible light. Nat Commun 2:176/1–6 Chen X, Luo Y, Zhang J, Jiang K, Pendry JB, Zhang S (2011) Macroscopic invisibility cloaking of visible light. Nat Commun 2:176/1–6
102.
go back to reference David H (1999) New foundations for classical mechanics. Kluwer Academic Publishers, Dordrecht David H (1999) New foundations for classical mechanics. Kluwer Academic Publishers, Dordrecht
104.
go back to reference Lier E, Werner DH, Scarborough CP, Wu Q, Bossard JA (2011) An octave-bandwidth negligible-loss radiofrequency metamaterial. Nat Mater 10:216–222CrossRef Lier E, Werner DH, Scarborough CP, Wu Q, Bossard JA (2011) An octave-bandwidth negligible-loss radiofrequency metamaterial. Nat Mater 10:216–222CrossRef
105.
go back to reference Cho C, Choo H, Park I (2008) Printed symmetric inverted-F antenna with a quasi-isotropic radiation pattern. Microw Opt Technol Lett 50:927–930CrossRef Cho C, Choo H, Park I (2008) Printed symmetric inverted-F antenna with a quasi-isotropic radiation pattern. Microw Opt Technol Lett 50:927–930CrossRef
107.
go back to reference Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, HobokenCrossRef Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, HobokenCrossRef
108.
go back to reference Jiang ZH, Gregory MD, Werner DH (2012) Broadband high directivity multi-beam emission through transformation optics enabled metamaterial lenses. IEEE Trans Antennas Propag 60:5063−5074 Jiang ZH, Gregory MD, Werner DH (2012) Broadband high directivity multi-beam emission through transformation optics enabled metamaterial lenses. IEEE Trans Antennas Propag 60:5063−5074
109.
go back to reference Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRef Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRef
110.
111.
go back to reference Zhang JJ, Luo Y, Xi S, Chen H, Ran L-X, Wu B-I, Kong JA (2008) Directive emission obtained by coordinate transformation. Prog Electromagnet Res 81:437–446CrossRef Zhang JJ, Luo Y, Xi S, Chen H, Ran L-X, Wu B-I, Kong JA (2008) Directive emission obtained by coordinate transformation. Prog Electromagnet Res 81:437–446CrossRef
Metadata
Title
Transformation Electromagnetics Inspired Lens Designs and Associated Metamaterial Implementations for Highly Directive Radiation
Authors
Douglas H. Werner
Zhi Hao Jiang
Jeremiah P. Turpin
Qi Wu
Micah D. Gregory
Copyright Year
2014
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4996-5_8