Skip to main content
Top

2021 | OriginalPaper | Chapter

4. Transmission Dynamics of Covid-19 from Environment with Red Zone, Orange Zone, Green Zone Using Mathematical Modelling

Authors : Bijal M. Yeolekar, Nita H. Shah

Published in: Mathematical Analysis for Transmission of COVID-19

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The novel corona virus or Covid-19 spread had its inception in November of 2019, and in March 2020, it was declared as a pandemic. Since its initial stage, it has now already infected over 5 million people, leading to the lockdown of countries around the world, and a halt on global as well as national travel across the globe. Based on this, the research proposes a mathematical Covid-19 model to study the outcome of these classified zones under different control strategies. In the nonlinear mathematical model, the total population has been divided into seven compartments, namely Susceptible, Exposed, Red zone, Orange zone, Green zone, Hospitalized, and Recovered. The spectral radius is calculated to analyze dynamics of the Covid-19. To control the spread of the virus, the parameters of controls are Medical Intervention, Partial Lockdown, and Strict Lockdown. This model has been validated with numerical data. The conclusion validates the implementation of lockdown in curbing Covid-19 cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D., & Yakubu, A. A. (Eds.). (2002). Mathematical approaches for emerging and reemerging infectious diseases: Models, methods, and theory. New York: Springer.MATH Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D., & Yakubu, A. A. (Eds.). (2002). Mathematical approaches for emerging and reemerging infectious diseases: Models, methods, and theory. New York: Springer.MATH
3.
go back to reference Funk, S., Gilad, E., Watkins, C., & Jansen, V. A. A. (2009). The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 106, 6872–6877.CrossRef Funk, S., Gilad, E., Watkins, C., & Jansen, V. A. A. (2009). The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 106, 6872–6877.CrossRef
4.
go back to reference Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 35(5), 1545–1549. Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 35(5), 1545–1549.
5.
go back to reference Muniz-Rodriguez, K., Chowell, G., Cheung, C.-H., Jia, D., Po-Kumar, A., Srivastava, P. K., & Takeuchi, Y. (2017). Modeling the role of information and limited optimal treatment on disease prevalence. Journal of Theoretical Biology, 414, 103–119. Muniz-Rodriguez, K., Chowell, G., Cheung, C.-H., Jia, D., Po-Kumar, A., Srivastava, P. K., & Takeuchi, Y. (2017). Modeling the role of information and limited optimal treatment on disease prevalence. Journal of Theoretical Biology, 414, 103–119.
6.
go back to reference Pontriagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1986). The mathematical theory of optimal process (pp. 4–5). New York: Gordon and Breach Science Publishers. Pontriagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1986). The mathematical theory of optimal process (pp. 4–5). New York: Gordon and Breach Science Publishers.
7.
go back to reference Safi, M. A., & Gumel, A. B. (2013). Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals. Journal of Mathematical Analysis and Applications, 399(2), 565–575.MathSciNetCrossRef Safi, M. A., & Gumel, A. B. (2013). Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals. Journal of Mathematical Analysis and Applications, 399(2), 565–575.MathSciNetCrossRef
8.
go back to reference Fuk-Woo, C. J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395, 514–523.CrossRef Fuk-Woo, C. J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395, 514–523.CrossRef
9.
go back to reference Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395, 514–523. Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395, 514–523.
10.
go back to reference Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 395, 689–697. Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 395, 689–697.
11.
13.
go back to reference Egger, M., Johnson, L., Althaus, C., Schni, A., Salanti, G., Low, N. & Norris, S. L. (2017). Developing WHO guidelines: Time to formally include evidence from mathematical modelling studies. F1000Research, 6, 1584. Egger, M., Johnson, L., Althaus, C., Schni, A., Salanti, G., Low, N. & Norris, S. L. (2017). Developing WHO guidelines: Time to formally include evidence from mathematical modelling studies. F1000Research, 6, 1584.
14.
go back to reference Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.MathSciNetCrossRef Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.MathSciNetCrossRef
15.
go back to reference Freedman, H. I., Ruan, S., & Tang, M. (1994). Uniform persistence and flows near a closed positively invariant set. Journal of Dynamics and Differential Equations, 6(4), 583–600.MathSciNetCrossRef Freedman, H. I., Ruan, S., & Tang, M. (1994). Uniform persistence and flows near a closed positively invariant set. Journal of Dynamics and Differential Equations, 6(4), 583–600.MathSciNetCrossRef
16.
go back to reference Heffernan, L., Smith, R., & Wahl, L. (2005). Perspectives on the basic reproduction ratio. Journal of the Royal Society Interface, 2, 281–293; Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., Hengartner, N. W., & Ke, R. (2020). The novel coronavirus, 2019-nCoV, is highly contagious and more infectious than initially estimated. Heffernan, L., Smith, R., & Wahl, L. (2005). Perspectives on the basic reproduction ratio. Journal of the Royal Society Interface, 2, 281–293; Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., Hengartner, N. W., & Ke, R. (2020). The novel coronavirus, 2019-nCoV, is highly contagious and more infectious than initially estimated.
17.
go back to reference Hethcote, H. W. (2000). The mathematics of infectious diseases. Society for Industrial and Applied Mathematics Review, 42(4), 599–653.MathSciNetMATH Hethcote, H. W. (2000). The mathematics of infectious diseases. Society for Industrial and Applied Mathematics Review, 42(4), 599–653.MathSciNetMATH
18.
go back to reference Sahu, G. P., & Dhar, J. (2012). Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Applied Mathematical Modelling, 36(3), 908–923.MathSciNetCrossRef Sahu, G. P., & Dhar, J. (2012). Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Applied Mathematical Modelling, 36(3), 908–923.MathSciNetCrossRef
19.
go back to reference Shah, N. H., Patel, Z. A., & Yeolekar, B. M. (2016). Stability analysis of vertical transmission of HIV with delays in treatment and Pre-AIDS. Journal of Basic and Applied Research International, 88–102. Shah, N. H., Patel, Z. A., & Yeolekar, B. M. (2016). Stability analysis of vertical transmission of HIV with delays in treatment and Pre-AIDS. Journal of Basic and Applied Research International, 88–102.
20.
go back to reference Shah, N. H., Satia, M. H., & Yeolekar, B. M. (2017). Optimum control for spread of pollutants through forest resources. Applied Mathematics, 8(5), 607–620.CrossRef Shah, N. H., Satia, M. H., & Yeolekar, B. M. (2017). Optimum control for spread of pollutants through forest resources. Applied Mathematics, 8(5), 607–620.CrossRef
21.
go back to reference Shah, N. H., Thakkar, F. A., & Yeolekar, B. M. (2017). Simulation of dengue disease with control. International Journal of Scientific and Innovative Mathematical Research, 5(7), 14–28. Shah, N. H., Thakkar, F. A., & Yeolekar, B. M. (2017). Simulation of dengue disease with control. International Journal of Scientific and Innovative Mathematical Research, 5(7), 14–28.
22.
go back to reference Shah, N. H., Yeolekar, B. M., & Patel, Z. A. (2020). Mathematical model to analyze effect of demonetization. In Mathematical models of infectious diseases and social issues (pp. 270–286). Pennsylvania: IGI Global. Shah, N. H., Yeolekar, B. M., & Patel, Z. A. (2020). Mathematical model to analyze effect of demonetization. In Mathematical models of infectious diseases and social issues (pp. 270–286). Pennsylvania: IGI Global.
23.
go back to reference Shah, N. H., Yeolekar, B. M., & Shukla, N. J. (2015). Liquor habit transmission model. Applied Mathematics, 6(08), 1208.CrossRef Shah, N. H., Yeolekar, B. M., & Shukla, N. J. (2015). Liquor habit transmission model. Applied Mathematics, 6(08), 1208.CrossRef
24.
go back to reference Shah, N. H., Yeolekar, B. M., & Patel, Z. A. (2016). Stability analysis of vertical transmission of HIV with delays in treatment and pre-AIDS. Journal of Basic and Applies Research International, 17(2), 88–102. Shah, N. H., Yeolekar, B. M., & Patel, Z. A. (2016). Stability analysis of vertical transmission of HIV with delays in treatment and pre-AIDS. Journal of Basic and Applies Research International, 17(2), 88–102.
25.
go back to reference Chen, T., Rui, J., Wang, Q., Zhao, Z., Cui, J., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases Poverty, 9, 24.CrossRef Chen, T., Rui, J., Wang, Q., Zhao, Z., Cui, J., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases Poverty, 9, 24.CrossRef
26.
go back to reference (2020) Coronavirus in Vietnam. New England Journal of Medicine, 382, 872–874. (2020) Coronavirus in Vietnam. New England Journal of Medicine, 382, 872–874.
28.
go back to reference Mandal, S., Bhatnagar, T., Arinaminpathy, N., Agarwal, A., Chowdhury, A., Murhekar, M., et al. (2020). Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach. Indian Journal of Medical Research. https://doi.org/10.4103/ijmr.IJMR-504-20. medRxiv preprint. Mandal, S., Bhatnagar, T., Arinaminpathy, N., Agarwal, A., Chowdhury, A., Murhekar, M., et al. (2020). Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach. Indian Journal of Medical Research. https://​doi.​org/​10.​4103/​ijmr.​IJMR-504-20. medRxiv preprint.
29.
go back to reference Phan Lan, T., Nguyen Thuong, V., Luong Quang, C., et al. (2020). Importation and human-to-human transmission of a novel coronavirus in Vietnam. New England Journal of Medicine, 382, 872–874.CrossRef Phan Lan, T., Nguyen Thuong, V., Luong Quang, C., et al. (2020). Importation and human-to-human transmission of a novel coronavirus in Vietnam. New England Journal of Medicine, 382, 872–874.CrossRef
30.
go back to reference Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1), 29–48.MathSciNetCrossRef Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1), 29–48.MathSciNetCrossRef
31.
go back to reference Victor, A. (2020). Mathematical predictions for COVID-19 as a global pandemic. Available at SSRN 3555879. Victor, A. (2020). Mathematical predictions for COVID-19 as a global pandemic. Available at SSRN 3555879.
32.
go back to reference Yang, Y., Lu, Q., Liu, M., Wang, Y., Zhang, A., Jalali, N, & Zhang, X. (2020). Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv. Yang, Y., Lu, Q., Liu, M., Wang, Y., Zhang, A., Jalali, N, & Zhang, X. (2020). Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv.
33.
go back to reference Xiao, X., Tang, S., & Wu, J. (2015). Media impact switching surface during an infectious disease outbreak. Scientific Reports, 5, 7838.CrossRef Xiao, X., Tang, S., & Wu, J. (2015). Media impact switching surface during an infectious disease outbreak. Scientific Reports, 5, 7838.CrossRef
34.
go back to reference Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., et al. (2004). Modelling strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, 2223–2232.CrossRef Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., et al. (2004). Modelling strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, 2223–2232.CrossRef
35.
go back to reference Nishiura, H., Linton, N. M., & Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus (2019-ncov) infections. medRxiv. Nishiura, H., Linton, N. M., & Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus (2019-ncov) infections. medRxiv.
36.
go back to reference Lewis, F. L., & Syrmos, V. L. (1995). Optimal control. Hoboken: Wiley. Lewis, F. L., & Syrmos, V. L. (1995). Optimal control. Hoboken: Wiley.
37.
go back to reference Simonsen, & Fung, I. C.-H. (2020). Epidemic doubling time of the 2019 novel spread of the 2019-nCoV outbreak originating in Wuhan, China: a modeling study. The Lancet, 395, 689–697. Simonsen, & Fung, I. C.-H. (2020). Epidemic doubling time of the 2019 novel spread of the 2019-nCoV outbreak originating in Wuhan, China: a modeling study. The Lancet, 395, 689–697.
38.
go back to reference Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., NickSun, C., Yang, W., et al. (2011). Effect of media-induced social distancing on disease transmission in a two patch setting. Mathematical Biosciences, 230, 87–95. Sanche, S., Lin, Y. T., Xu, C., Romero-Severson, E., NickSun, C., Yang, W., et al. (2011). Effect of media-induced social distancing on disease transmission in a two patch setting. Mathematical Biosciences, 230, 87–95.
39.
go back to reference Guan, W., Ni, Z., Hu, Y., et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. Guan, W., Ni, Z., Hu, Y., et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv.
40.
go back to reference Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. ... Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J. ... Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine.
41.
go back to reference Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine, 9(2), 462.CrossRef Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine, 9(2), 462.CrossRef
42.
go back to reference Nadim, S. K., Ghosh, I., & Chattopadhyay, J. (2020). Short-term predictions and prevention strategies for COVID-2019: A model based study. arXiv:2003.08150. Nadim, S. K., Ghosh, I., & Chattopadhyay, J. (2020). Short-term predictions and prevention strategies for COVID-2019: A model based study. arXiv:​2003.​08150.
44.
go back to reference d’Onofrio, A., & Manfredi, P. (2009). Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. Journal of Theoretical Biology, 256, 473–478.MathSciNetCrossRef d’Onofrio, A., & Manfredi, P. (2009). Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. Journal of Theoretical Biology, 256, 473–478.MathSciNetCrossRef
45.
go back to reference Buonomo, B., d’Onofrio, A., & Lacitignola, D. (2008). Global stability of an SIR epidemic model with information dependent vaccination. Mathematical Biosciences, 216, 9–16.MathSciNetCrossRef Buonomo, B., d’Onofrio, A., & Lacitignola, D. (2008). Global stability of an SIR epidemic model with information dependent vaccination. Mathematical Biosciences, 216, 9–16.MathSciNetCrossRef
47.
go back to reference Das, D. K., Khajanchi, S., & Kar, T. K. (2020). The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Applied Mathematics and Computation, 366, 124732.MathSciNetCrossRef Das, D. K., Khajanchi, S., & Kar, T. K. (2020). The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Applied Mathematics and Computation, 366, 124732.MathSciNetCrossRef
48.
go back to reference Sun, C., Yang, W., Arino, J., & Khan, K. (2011). Effect of media-induced social distancing on disease transmission in a two patch setting. Mathematical Biosciences, 230, 87–95.MathSciNetCrossRef Sun, C., Yang, W., Arino, J., & Khan, K. (2011). Effect of media-induced social distancing on disease transmission in a two patch setting. Mathematical Biosciences, 230, 87–95.MathSciNetCrossRef
49.
go back to reference Fleming, W. H., & Rishel, R. W. (2012). Deterministic and stochastic optimal control (Vol. 1). Berlin: Springer Science and Business Media. Fleming, W. H., & Rishel, R. W. (2012). Deterministic and stochastic optimal control (Vol. 1). Berlin: Springer Science and Business Media.
50.
go back to reference Lukes, D. L. (1982). Differential equations: Classical to controlled (Vol. 162). Cambridge: Academic Press. Lukes, D. L. (1982). Differential equations: Classical to controlled (Vol. 162). Cambridge: Academic Press.
51.
go back to reference Hartl, R. F., & Sethi, S. P. (1983). A note on the free terminal time transversality condition. Zeitschrift für Operations Research, 27(1), 203–208.MathSciNetMATH Hartl, R. F., & Sethi, S. P. (1983). A note on the free terminal time transversality condition. Zeitschrift für Operations Research, 27(1), 203–208.MathSciNetMATH
53.
go back to reference Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020). Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. arXiv:2002.12298. Liu, Z., Magal, P., Seydi, O., & Webb, G. (2020). Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data. arXiv:​2002.​12298.
Metadata
Title
Transmission Dynamics of Covid-19 from Environment with Red Zone, Orange Zone, Green Zone Using Mathematical Modelling
Authors
Bijal M. Yeolekar
Nita H. Shah
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6264-2_4

Premium Partners