Skip to main content
Top

2013 | OriginalPaper | Chapter

7. Transport Properties in Food Process Design

Authors : M. Krokida, G. D. Saravacos

Published in: Advances in Food Process Engineering Research and Applications

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Food process design is concerned with the engineering design and economics of industrial food processes. Quantitative analysis of food processing operations requires material and energy (heat) balances on the process flowsheet. Equipment and energy (heat) requirements are calculated from rate equations of momentum (flow), heat, and mass transfer.
Process engineering calculations require the thermal and transport properties of foods, which are taken from the literature. Reliable values of thermal properties (specific heat and enthalpy changes) can be predicted from empirical correlations or taken from published data.
Transport properties (viscosity, thermal conductivity, and mass diffusivity) are strongly affected by the composition and physical structure of the food product, such as apparent density and porosity.
The rheological properties of fluid foods are affected by the size and concentration of the dissolved molecules or suspended particles. Temperature has a stronger effect on the viscosity of concentrated solutions, such as sugars, than on the apparent viscosity of suspensions.
Experimental data on thermal and mass diffusivity are essential. The thermal conductivity of solids decreases at higher porosities, while the opposite effect is observed with mass diffusivity. Temperature has a small effect on thermal conductivity, while mass diffusivity is affected strongly in nonporous and less in porous solids.
Heat and mass transfer coefficients in food process design are affected by the heat transfer medium, food material, and process equipment. Approximate values of the transfer coefficients are obtained from data in the literature and empirical correlations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Boukouvalas CJ, Krokida MK, Maroulis ZB, Marinos-Kouris D (2006) Effect of material moisture content and temperature on the true density of foods. Int J Food Prop 9(1):109–125CrossRef Boukouvalas CJ, Krokida MK, Maroulis ZB, Marinos-Kouris D (2006) Effect of material moisture content and temperature on the true density of foods. Int J Food Prop 9(1):109–125CrossRef
go back to reference Brodkey RS, Hershey HC (1988) Transport phenomena. A unified approach. McGraw-Hill, New York Brodkey RS, Hershey HC (1988) Transport phenomena. A unified approach. McGraw-Hill, New York
go back to reference Gekas V (1992) Transport properties of foods and biological materials. CRC Press, New York Gekas V (1992) Transport properties of foods and biological materials. CRC Press, New York
go back to reference Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15(10):2441–2458CrossRef Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15(10):2441–2458CrossRef
go back to reference Krokida MK, Maroulis ZB, Rahman MS (2001) A structural generic model to predict the effective thermal conductivity of granular materials. Drying Technol 19(9):2277–2290CrossRef Krokida MK, Maroulis ZB, Rahman MS (2001) A structural generic model to predict the effective thermal conductivity of granular materials. Drying Technol 19(9):2277–2290CrossRef
go back to reference Lazou AE, Michailidis PA, Thymi S, Krokida MK, Bisharat GI (2007) Structural properties of corn-legume based extrudates as a function of processing conditions and raw material characteristics. Int J Food Prop 10(4):721–738CrossRef Lazou AE, Michailidis PA, Thymi S, Krokida MK, Bisharat GI (2007) Structural properties of corn-legume based extrudates as a function of processing conditions and raw material characteristics. Int J Food Prop 10(4):721–738CrossRef
go back to reference Maroulis ZB, Saravacos GD (2003) Food process design. Marcel Dekker, New YorkCrossRef Maroulis ZB, Saravacos GD (2003) Food process design. Marcel Dekker, New YorkCrossRef
go back to reference Michailidis PA, Krokida MK, Rahman MS (2009a) Data and models of density, shrinkage and porosity in food properties handbook, 2ed Michailidis PA, Krokida MK, Rahman MS (2009a) Data and models of density, shrinkage and porosity in food properties handbook, 2ed
go back to reference Michailidis PA, Krokida MK, Bisharat GI, Marinos-Kouris D, Rahman MS (2009b) Measurement of density, shrinkage and porosity in food properties handbook, 2ed Michailidis PA, Krokida MK, Bisharat GI, Marinos-Kouris D, Rahman MS (2009b) Measurement of density, shrinkage and porosity in food properties handbook, 2ed
go back to reference Oikonomopoulou VP, Krokida MK, Karathanos VT (2011) Structural properties of freeze-dried rice. J Food Eng 107(2011):326–333CrossRef Oikonomopoulou VP, Krokida MK, Karathanos VT (2011) Structural properties of freeze-dried rice. J Food Eng 107(2011):326–333CrossRef
go back to reference Rahman MS (1995) Food properties handbook. CRC Press, New York Rahman MS (1995) Food properties handbook. CRC Press, New York
go back to reference Rahman MS, McCarthy OJ (1999) A classification of food properties. Int J Food Prop 2(2):93–99CrossRef Rahman MS, McCarthy OJ (1999) A classification of food properties. Int J Food Prop 2(2):93–99CrossRef
go back to reference Rao MA, Rizvi SSH, Datta AE (2005) Engineering properties of foods, 3rd edn. Taylor and Francis, New YorkCrossRef Rao MA, Rizvi SSH, Datta AE (2005) Engineering properties of foods, 3rd edn. Taylor and Francis, New YorkCrossRef
go back to reference Reid RC, Prausnitz JM, Poling BE (1987) The physical properties of gases and liquids, 4th edn. McGraw-Hill, New York Reid RC, Prausnitz JM, Poling BE (1987) The physical properties of gases and liquids, 4th edn. McGraw-Hill, New York
go back to reference Saravacos GD, Maroulis ZB (2002) Transport properties of foods. Marcel Dekker, New York Saravacos GD, Maroulis ZB (2002) Transport properties of foods. Marcel Dekker, New York
go back to reference Saravacos GD, Maroulis ZB (2011) Food process engineering operations. CRC Press, New York Saravacos GD, Maroulis ZB (2011) Food process engineering operations. CRC Press, New York
go back to reference Zogzas NP, Maroulis ZB, Marinos-Kouris D (1994) Densities, shrinkage and porosity of some vegetables during air drying. Drying Technol 12(7):1653–1666CrossRef Zogzas NP, Maroulis ZB, Marinos-Kouris D (1994) Densities, shrinkage and porosity of some vegetables during air drying. Drying Technol 12(7):1653–1666CrossRef
Metadata
Title
Transport Properties in Food Process Design
Authors
M. Krokida
G. D. Saravacos
Copyright Year
2013
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4614-7906-2_7