Skip to main content
Top
Published in: Fire Technology 3/2017

26-07-2016

Transport Time Lag Effect on Smoke Flow Characteristics in Long-Narrow Spaces

Authors: Jinhui Wang, Guoqiang Li, Long Shi, Yu Jiao, Qimiao Xie

Published in: Fire Technology | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper focuses on the smoke transport lag time at the early stage of fires in long-narrow spaces, which is defined as the time from fire onset to the time when smoke reaches a given position on the ceiling. For a heat detector at a specific location on the ceiling, the smoke transport lag time is a part of the response time of the heat detector. Especially when the heat release rate is relatively small at the early stage of fires, the smoke transport lag time will be very long, which will hence lead to the increase of heat detector response time. It is clear that the prediction of smoke transport lag time is critical to the activation time of the heat detector. However, previous studies have much focused on fire characteristics in long-narrow spaces, leaving very few on the transport time lag. Therefore, in this study, a theoretical model regarding smoke transport time lag was developed for both steady and time-dependent fires based on the weak-plume theory. This model was validated by a series of reduced-scale experiments. It can be concluded from comparison that the predictions of this model agree reasonably well with the corresponding experimental results. Using the proposed method, the dimensionless equations of smoke transport time lag, velocity and temperature considering the smoke lag effect in a long-narrow space for time-squared fires were also theoretically deduced. Additionally, to further determine the applicability of ‘Quasi-steady’ state assumption for time-squared fires, a calculation method regarding the critical time was also developed. The outcomes from this study will be beneficial to the development of fire detection model in long-narrow spaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alpert RL (2002) Ceiling jet flows. In: SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Inc., Quincy, 2-18–2-20 Alpert RL (2002) Ceiling jet flows. In: SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Inc., Quincy, 2-18–2-20
4.
go back to reference Heskestad G (1975) Physical modeling of fire. J Fire Flammabl 6:253–273 Heskestad G (1975) Physical modeling of fire. J Fire Flammabl 6:253–273
6.
go back to reference Heskestad G, Delichatsios MA (1979) The initial convective flow in fire. In: Seventeenth symposium (international) on combustion. Combustion Institute, Pittsburgh. 17(1) 1113–1123. doi:10.1016/S0082-0784(79)80106-X Heskestad G, Delichatsios MA (1979) The initial convective flow in fire. In: Seventeenth symposium (international) on combustion. Combustion Institute, Pittsburgh. 17(1) 1113–1123. doi:10.​1016/​S0082-0784(79)80106-X
8.
go back to reference GB50116-2013 (2013) Code for design of automatic fire alarm system, National standard of the People’s Republic of China GB50116-2013 (2013) Code for design of automatic fire alarm system, National standard of the People’s Republic of China
9.
go back to reference NFPA 13 (2013) Standard for the installation of sprinkler systems, National Fire Protection Association, Quincy NFPA 13 (2013) Standard for the installation of sprinkler systems, National Fire Protection Association, Quincy
11.
go back to reference Koslowski CC, Motevalli V (1994) Behavior of a 2-dimensional ceiling jet flow: a beamed ceiling configuration. In: Kashiwagi T (ed) Fire Safety Science, Proceedings of the Fourth International Symposium, International Association of Fire Safety Science, Bethesda, pp 469–480. doi:10.3801/IAFSS.FSS.4-469 Koslowski CC, Motevalli V (1994) Behavior of a 2-dimensional ceiling jet flow: a beamed ceiling configuration. In: Kashiwagi T (ed) Fire Safety Science, Proceedings of the Fourth International Symposium, International Association of Fire Safety Science, Bethesda, pp 469–480. doi:10.​3801/​IAFSS.​FSS.​4-469
13.
go back to reference Evans DD, Stroup DW (1985) Methods to calculate the response time of heat and smoke detectors installed below large unobstructed ceilings. Fire Technol 22(1):54–65. doi:10.1007/BF01040244 CrossRef Evans DD, Stroup DW (1985) Methods to calculate the response time of heat and smoke detectors installed below large unobstructed ceilings. Fire Technol 22(1):54–65. doi:10.​1007/​BF01040244 CrossRef
14.
go back to reference Alpert RL (2002) Ceiling jet flows. SFPE handbook of fire protection engineering. National Fire Protection Association, Inc., Quincy, pp 2–23 Alpert RL (2002) Ceiling jet flows. SFPE handbook of fire protection engineering. National Fire Protection Association, Inc., Quincy, pp 2–23
20.
go back to reference Wang JH, Jiao Y, Xu LP (2011) An approximate calculation method for response time and arrangement space of ship smoke detectors. China Saf Sci J 21(11):67–71 (in Chinese). doi:10.3969/j.issn.1003-3033 Wang JH, Jiao Y, Xu LP (2011) An approximate calculation method for response time and arrangement space of ship smoke detectors. China Saf Sci J 21(11):67–71 (in Chinese). doi:10.​3969/​j.​issn.​1003-3033
33.
go back to reference Holborn P, Nolan P, Golt J (2004) An analysis of fire sizes, fire growth rates and times between events using data from fire investigations. Fire Saf J 39(6):481–524. doi:10.1016/j.firesaf.2004.05.002 CrossRef Holborn P, Nolan P, Golt J (2004) An analysis of fire sizes, fire growth rates and times between events using data from fire investigations. Fire Saf J 39(6):481–524. doi:10.​1016/​j.​firesaf.​2004.​05.​002 CrossRef
34.
go back to reference Tanaka T, Fujita T, Yamaguchi J (2000) Investigation into rise time of buoyant fire plume fronts. Int J Eng Perform Fire Codes 2(1):14–25 Tanaka T, Fujita T, Yamaguchi J (2000) Investigation into rise time of buoyant fire plume fronts. Int J Eng Perform Fire Codes 2(1):14–25
35.
go back to reference Liu X, Xu S, Lu S et al.(2004) Analysis and design of similarity model of ship fire simulation cabin. Fire Sci Technol 23(5):413–417 Liu X, Xu S, Lu S et al.(2004) Analysis and design of similarity model of ship fire simulation cabin. Fire Sci Technol 23(5):413–417
Metadata
Title
Transport Time Lag Effect on Smoke Flow Characteristics in Long-Narrow Spaces
Authors
Jinhui Wang
Guoqiang Li
Long Shi
Yu Jiao
Qimiao Xie
Publication date
26-07-2016
Publisher
Springer US
Published in
Fire Technology / Issue 3/2017
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-016-0614-2

Other articles of this Issue 3/2017

Fire Technology 3/2017 Go to the issue