Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 5/2022

15-11-2021 | Original Article

TSLOD: a coupled generalized subsequence local outlier detection model for multivariate time series

Authors: Fan Meng, Yang Gao, Huihui Wang, Yi Liu, Hairong Wang

Published in: International Journal of Machine Learning and Cybernetics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unsupervised subsequence outlier detection on multivariate time series (MTS) is a valuable problem in practice that can observably save the cost of labeling and provide interpretability in real applications. For the task, most of the classic methods are under two strong assumptions: (i) stationary MTS. it may have difficulty coping with the phenomenon of time drift. (ii) Attribute-level IIDness (independent and identically distributed), it may ignore the relationship between attribute when measuring the similarity between multivariate subsequences. The above assumptions limit the availability of existing methods in real scenarios. To address this issue, this paper introduces a novel coupled generalized local outlier detection model for MTS, which extends the traditional generalized local outlier detection model to cope with subsequence outlier detection tasks by incorporating a novel Non-IID similarity metric. Specifically, the proposed method mainly includes three aspects: (i) represents the MTS relationship in symbolic space which provides a lower complexity and satisfactory sensitivity. (ii) Proposes a Non-IID coupled similarity metric (TSDis) which considers the intrinsic intra-attribute and inter-attribute coupling between segments. (iii) Extends the traditional generalized local outlier detection model to handle subsequence outlier detection tasks by embedding Non-IID coupled similarity metric. Experimental results show the proposed method can utilize the potential characteristics of MTS effectively and stably. Meanwhile, it detects outliers more accurately than baseline approaches on 12 time-series datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Footnotes
1
Subsequence is an exchangeable term for segment in this paper.
 
2
Attribute are also an interchangeable term for variable in the context of relational data.
 
Literature
2.
go back to reference Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660MathSciNetCrossRef Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Discov 31(3):606–660MathSciNetCrossRef
3.
go back to reference Bagnall AJ, Dau HA, Lines J, Flynn M, Large J, Bostrom A, Southam P, Keogh EJ (2018) The UEA multivariate time series classification archive, 2018. CoRR abs/1811.0 Bagnall AJ, Dau HA, Lines J, Flynn M, Large J, Bostrom A, Southam P, Keogh EJ (2018) The UEA multivariate time series classification archive, 2018. CoRR abs/1811.0
4.
go back to reference Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop 1994, pp 359–370 Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop 1994, pp 359–370
5.
go back to reference Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of ACM SIGMOD 2000, pp 1–12 Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Proceedings of ACM SIGMOD 2000, pp 1–12
6.
go back to reference Bu Y, Leung OTW, Fu AWC, Keogh EJ, Pei J, Meshkin S (2007) WAT: finding top-K discords in time series database. In: Proceedings of ICDM 2007, pp 449–454 Bu Y, Leung OTW, Fu AWC, Keogh EJ, Pei J, Meshkin S (2007) WAT: finding top-K discords in time series database. In: Proceedings of ICDM 2007, pp 449–454
7.
go back to reference Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv CSUR 41(3):15 Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv CSUR 41(3):15
8.
go back to reference Chandola V, Banerjee A, Kumar V (2012) Anomaly detection for discrete sequences: a survey. IEEE Trans Knowl Data Eng 24(5):823–839CrossRef Chandola V, Banerjee A, Kumar V (2012) Anomaly detection for discrete sequences: a survey. IEEE Trans Knowl Data Eng 24(5):823–839CrossRef
9.
go back to reference Chau PM, Duc BM, Anh DT (2018) Discord discovery in streaming time series based on an improved HOT SAX algorithm. In: Proceedings of SoICT 2018, ACM, pp 24–30 Chau PM, Duc BM, Anh DT (2018) Discord discovery in streaming time series based on an improved HOT SAX algorithm. In: Proceedings of SoICT 2018, ACM, pp 24–30
10.
go back to reference Esling P, Agón C (2012) Time-series data mining. ACM Comput Surv 45(1):12:1-12:34CrossRef Esling P, Agón C (2012) Time-series data mining. ACM Comput Surv 45(1):12:1-12:34CrossRef
11.
go back to reference Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: Proceedings of ACM SIGMOD, pp 419–429 Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: Proceedings of ACM SIGMOD, pp 419–429
12.
go back to reference Hyndman RJ, Wang E, Laptev N (2015) Large-scale unusual time series detection. In: 2015 IEEE ICDM workshop, pp 1616–1619 Hyndman RJ, Wang E, Laptev N (2015) Large-scale unusual time series detection. In: 2015 IEEE ICDM workshop, pp 1616–1619
13.
go back to reference Jian S, Cao L, Lu K, Gao H (2018) Unsupervised coupled metric similarity for non-IID categorical data. IEEE Trans Knowl Data Eng 30:1810–23CrossRef Jian S, Cao L, Lu K, Gao H (2018) Unsupervised coupled metric similarity for non-IID categorical data. IEEE Trans Knowl Data Eng 30:1810–23CrossRef
14.
go back to reference Keogh EJ, Lin J, Fu AWC (2005) HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of ICDM 2005, pp 226–233 Keogh EJ, Lin J, Fu AWC (2005) HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of ICDM 2005, pp 226–233
15.
go back to reference Keogh EJ, Rakthanmanon T (2013) Fast Shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of ICDM 2013, pp 668–676 Keogh EJ, Rakthanmanon T (2013) Fast Shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of ICDM 2013, pp 668–676
16.
go back to reference Li G, Bräysy O, Jiang L, Wu Z, Wang Y (2013) Finding time series discord based on bit representation clustering. Knowl Based Syst 54:243–254CrossRef Li G, Bräysy O, Jiang L, Wu Z, Wang Y (2013) Finding time series discord based on bit representation clustering. Knowl Based Syst 54:243–254CrossRef
17.
go back to reference Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop, ACM, pp 2–11 Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop, ACM, pp 2–11
18.
go back to reference Rebbapragada U, Protopapas P, Brodley CE, Alcock CR (2009) Finding anomalous periodic time series. Mach Learn 74(3):281–313CrossRef Rebbapragada U, Protopapas P, Brodley CE, Alcock CR (2009) Finding anomalous periodic time series. Mach Learn 74(3):281–313CrossRef
19.
go back to reference Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging, Springer, pp 146–157 Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging, Springer, pp 146–157
20.
go back to reference Schubert E, Zimek A, Kriegel HP (2014) Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min Knowl Discov 28(1):190–237MathSciNetCrossRef Schubert E, Zimek A, Kriegel HP (2014) Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min Knowl Discov 28(1):190–237MathSciNetCrossRef
21.
go back to reference Su Y, Zhao Y, Niu C, Liu R, Sun W, Pei D (2019) Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2828–2837 Su Y, Zhao Y, Niu C, Liu R, Sun W, Pei D (2019) Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2828–2837
22.
go back to reference Vlachos M, Gunopulos D, Kollios G (2002) discovering similar multidimensional trajectories. In: Proceedings of ICDE 2002, pp 673–684 Vlachos M, Gunopulos D, Kollios G (2002) discovering similar multidimensional trajectories. In: Proceedings of ICDE 2002, pp 673–684
24.
go back to reference Ye L, Keogh EJ (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of SIGKDD 2009, pp 947–956 Ye L, Keogh EJ (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of SIGKDD 2009, pp 947–956
25.
go back to reference Zhang C, Song D, Chen Y, Feng X, Lumezanu C, Cheng W, Ni J, Zong B, Chen H, Chawla NV (2019) A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 1409–1416 Zhang C, Song D, Chen Y, Feng X, Lumezanu C, Cheng W, Ni J, Zong B, Chen H, Chawla NV (2019) A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, pp 1409–1416
26.
go back to reference Zhou C, Paffenroth RC (2017) Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 665–674 Zhou C, Paffenroth RC (2017) Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 665–674
Metadata
Title
TSLOD: a coupled generalized subsequence local outlier detection model for multivariate time series
Authors
Fan Meng
Yang Gao
Huihui Wang
Yi Liu
Hairong Wang
Publication date
15-11-2021
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 5/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-021-01462-x

Other articles of this Issue 5/2022

International Journal of Machine Learning and Cybernetics 5/2022 Go to the issue