Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Tumor Growth Prediction Using Convolutional Networks

Authors : Ling Zhang, Lu Le, Ronald M. Summers, Electron Kebebew, Jianhua Yao

Published in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Prognostic tumor growth modeling via volumetric medical imaging observations is a challenging yet important problem in precision and predictive medicine. It can potentially imply and lead to better outcomes of tumor treatment management and surgical planning. Traditionally, this problem is tackled through mathematical modeling. Recent advances of convolutional neural networks (ConvNets) have demonstrated higher accuracy and efficiency than conventional mathematical models can be achieved in predicting tumor growth. This indicates that deep learning based data-driven techniques may have great potentials on addressing such problem. In this chapter, we first introduce a statistical group learning approach to predict the pattern of tumor growth that incorporates both the population trend and personalized data, where deep ConvNet is used to model the voxel-wise spatiotemporal tumor progression. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal pancreatic tumor data set show that both approaches substantially outperform a state-of-the-art mathematical model-based approach in both accuracy and efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. IJCV 92(1):1–31CrossRef Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. IJCV 92(1):1–31CrossRef
2.
go back to reference Bosman FT, Carneiro F, Hruban RH, Theise ND et al (2010) WHO classification of tumours of the digestive system, 4th edn. World Health Organization, Geneva Bosman FT, Carneiro F, Hruban RH, Theise ND et al (2010) WHO classification of tumours of the digestive system, 4th edn. World Health Organization, Geneva
3.
go back to reference Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: ECCV, pp 25–36. Springer, Berlin Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: ECCV, pp 25–36. Springer, Berlin
4.
go back to reference Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27 Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27
5.
go back to reference Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans Biomed Eng 60(1):169–173CrossRef Chen X, Summers RM, Yao J (2013) Kidney tumor growth prediction by coupling reaction-diffusion and biomechanical model. IEEE Trans Biomed Eng 60(1):169–173CrossRef
6.
go back to reference Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. TMI 24(10):1334–1346 Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. TMI 24(10):1334–1346
7.
go back to reference Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: CVPR, pp 1933–1941 Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: CVPR, pp 1933–1941
8.
go back to reference Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783CrossRef Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14(8):777–783CrossRef
9.
go back to reference Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. TMI 35(5):1153–1159 Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. TMI 35(5):1153–1159
10.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422MATHCrossRef Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422MATHCrossRef
11.
go back to reference Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: MICCAI, pp 642–650 Hogea C, Davatzikos C, Biros G (2007) Modeling glioma growth and mass effect in 3D MR images of the brain. In: MICCAI, pp 642–650
12.
go back to reference Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825MathSciNetMATHCrossRef Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825MathSciNetMATHCrossRef
14.
go back to reference Keutgen XM, Hammel P, Choyke PL, Libutti SK, Jonasch E, Kebebew E (2016) Evaluation and management of pancreatic lesions in patients with von hippel-lindau disease. Nat Rev Clin Oncol 13(9):537–549CrossRef Keutgen XM, Hammel P, Choyke PL, Libutti SK, Jonasch E, Kebebew E (2016) Evaluation and management of pancreatic lesions in patients with von hippel-lindau disease. Nat Rev Clin Oncol 13(9):537–549CrossRef
15.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1097–1105
16.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
17.
go back to reference Liu C (2009) Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute of Technology Liu C (2009) Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute of Technology
18.
go back to reference Liu Y, Sadowski S, Weisbrod A, Kebebew E, Summers R, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566CrossRef Liu Y, Sadowski S, Weisbrod A, Kebebew E, Summers R, Yao J (2014) Patient specific tumor growth prediction using multimodal images. Med Image Anal 18(3):555–566CrossRef
19.
go back to reference Maddison CJ, Huang A, Sutskever I, Silver D (2015) Move evaluation in go using deep convolutional neural networks. In: ICLR Maddison CJ, Huang A, Sutskever I, Silver D (2015) Move evaluation in go using deep convolutional neural networks. In: ICLR
20.
go back to reference Morris M, Greiner R, Sander J, Murtha A, Schmidt M (2006) Learning a classification-based glioma growth model using MRI data. J Comput 1(7):21–31CrossRef Morris M, Greiner R, Sander J, Murtha A, Schmidt M (2006) Learning a classification-based glioma growth model using MRI data. J Comput 1(7):21–31CrossRef
21.
go back to reference Neverova N, Luc P, Couprie C, Verbeek J, LeCun Y (2017) Predicting deeper into the future of semantic segmentation. In: ICCV Neverova N, Luc P, Couprie C, Verbeek J, LeCun Y (2017) Predicting deeper into the future of semantic segmentation. In: ICCV
22.
go back to reference Nie D, Zhang H, Adeli E, Liu L, Shen D (2016) 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: International conference on medical image computing and computer-assisted intervention, pp 212–220. Springer Nie D, Zhang H, Adeli E, Liu L, Shen D (2016) 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: International conference on medical image computing and computer-assisted intervention, pp 212–220. Springer
23.
go back to reference Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489CrossRef
24.
go back to reference Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: NIPS, pp 568–576 Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: NIPS, pp 568–576
25.
go back to reference Swanson KR, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–329CrossRef Swanson KR, Alvord E, Murray J (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 33(5):317–329CrossRef
26.
27.
go back to reference Weisbrod AB, Kitano M, Thomas F, Williams D, Gulati N, Gesuwan K, Liu Y, Venzon D, Turkbey I, Choyke P et al (2014) Assessment of tumor growth in pancreatic neuroendocrine tumors in von hippel lindau syndrome. J Am CollE Surg 218(2):163–169CrossRef Weisbrod AB, Kitano M, Thomas F, Williams D, Gulati N, Gesuwan K, Liu Y, Venzon D, Turkbey I, Choyke P et al (2014) Assessment of tumor growth in pancreatic neuroendocrine tumors in von hippel lindau syndrome. J Am CollE Surg 218(2):163–169CrossRef
28.
go back to reference Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D (2012) Prediction of brain MR scans in longitudinal tumor follow-up studies. In: MICCAI, pp 179–187. Springer Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D (2012) Prediction of brain MR scans in longitudinal tumor follow-up studies. In: MICCAI, pp 179–187. Springer
29.
go back to reference Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63(5):318–348CrossRef Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63(5):318–348CrossRef
30.
go back to reference Wong KC, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25(1):72–85CrossRef Wong KC, Summers RM, Kebebew E, Yao J (2015) Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med Image Anal 25(1):72–85CrossRef
31.
go back to reference Wong KCL, Summers RM, Kebebew E, Yao J (2017) Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. TMI 36(1):111–123 Wong KCL, Summers RM, Kebebew E, Yao J (2017) Pancreatic tumor growth prediction with elastic-growth decomposition, image-derived motion, and FDM-FEM coupling. TMI 36(1):111–123
32.
go back to reference Yao J, Wang S, Zhu X, Huang J (2016) Imaging biomarker discovery for lung cancer survival prediction. In: MICCAI, pp 649–657. Springer Yao J, Wang S, Zhu X, Huang J (2016) Imaging biomarker discovery for lung cancer survival prediction. In: MICCAI, pp 649–657. Springer
33.
go back to reference Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, De Vries EG et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523CrossRef Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, De Vries EG et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364(6):514–523CrossRef
34.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128CrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128CrossRef
35.
go back to reference Zhang L, Lu L, Nogues I, Summers R, Liu S, Yao J (2017) Deeppap: deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform 21(6):1633–1643CrossRef Zhang L, Lu L, Nogues I, Summers R, Liu S, Yao J (2017) Deeppap: deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform 21(6):1633–1643CrossRef
36.
go back to reference Zhang L, Lu L, Summers RM, Kebebew E, Yao J (2017) Personalized pancreatic tumor growth prediction via group learning. In: MICCAI, pp 424–432 Zhang L, Lu L, Summers RM, Kebebew E, Yao J (2017) Personalized pancreatic tumor growth prediction via group learning. In: MICCAI, pp 424–432
Metadata
Title
Tumor Growth Prediction Using Convolutional Networks
Authors
Ling Zhang
Lu Le
Ronald M. Summers
Electron Kebebew
Jianhua Yao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_12

Premium Partner