Skip to main content
Top
Published in: Journal of Materials Science 5/2018

31-10-2017 | Energy materials

Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution

Authors: Min Wang, Xiuxun Han, Yun Zhao, Jiajia Li, Peng Ju, Zhaomin Hao

Published in: Journal of Materials Science | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nano-sized materials have attracted tremendous attentions because of their promising practical applications and theoretical values. The nano-sized materials are able to not only enhance the intrinsic properties of their bulk counterparts but also give birth to new promising properties. Herein, heterojunctions consisted of graphene oxide (GO) and three different MoS2 nanostructures, including nanoflowers, nanoparticles, and quantum dots, were constructed and used as photocatalysts in water splitting. The electrochemical behavior and photocatalytic performance of MoS2/GO composites were found closely related to the particle size and morphology of MoS2. Compared to bulk MoS2/GO photocatalyst, nano-sized MoS2/GO heterostructures exhibited obviously enhanced performance in photocatalytic hydrogen generation. Benefitting from the surface effect and the quantum confinement in MoS2 quantum dots, MoS2 quantum dots/GO displayed the highest photocatalytic activities. This study indicates that the decrease in the dimension of MoS2 can effectively increase the photocatalytic hydrogen evolution performance of MoS2/GO heterostructures, and thus suggests preferred strategy to design other HER photocatalysts based on MoS2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRef Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRef
2.
go back to reference Xiang Q, Yu J (2013) Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4:753–759CrossRef Xiang Q, Yu J (2013) Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4:753–759CrossRef
3.
go back to reference Zhang R, Wan W, Li D, Dong F, Zhou Y (2017) Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chinese J. Catal. 38:313–320CrossRef Zhang R, Wan W, Li D, Dong F, Zhou Y (2017) Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chinese J. Catal. 38:313–320CrossRef
4.
go back to reference Fujishina A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–41CrossRef Fujishina A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–41CrossRef
5.
go back to reference Zhang J, Sun J, Maed K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678CrossRef Zhang J, Sun J, Maed K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678CrossRef
6.
go back to reference Yuan Q, Liu D, Zhang N, Ye W, Ju H, Shi L, Long R, Zhu J, Xiong Y (2017) Noble-metal-free Janus-like structures by cation exchange for z-scheme photocatalytic water splitting under lroadband bight irradiation. Angew Chem Int Ed 56:1–6CrossRef Yuan Q, Liu D, Zhang N, Ye W, Ju H, Shi L, Long R, Zhu J, Xiong Y (2017) Noble-metal-free Janus-like structures by cation exchange for z-scheme photocatalytic water splitting under lroadband bight irradiation. Angew Chem Int Ed 56:1–6CrossRef
7.
go back to reference Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
8.
go back to reference Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef
9.
go back to reference Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk − shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433CrossRef Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk − shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433CrossRef
10.
go back to reference Wang M, Ju P, Li W, Zhao Y, Han X (2017) Ag2S nanoparticle-decorated MoS2 for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting. Dalton Trans 46:483–490CrossRef Wang M, Ju P, Li W, Zhao Y, Han X (2017) Ag2S nanoparticle-decorated MoS2 for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting. Dalton Trans 46:483–490CrossRef
11.
go back to reference Chen L, He F, Zhao N, Guo R (2017) Fabrication of 3D quasi-hierarchical Z-scheme RGO-Fe2O3-MoS2 nanoheterostructures for highly enhanced visible-light-driven photocatalytic degradation. Appl Surf Sci 420:669–680CrossRef Chen L, He F, Zhao N, Guo R (2017) Fabrication of 3D quasi-hierarchical Z-scheme RGO-Fe2O3-MoS2 nanoheterostructures for highly enhanced visible-light-driven photocatalytic degradation. Appl Surf Sci 420:669–680CrossRef
12.
13.
go back to reference Hong X, Kim J, Shi S, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F (2014) Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9:682–686CrossRef Hong X, Kim J, Shi S, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F (2014) Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9:682–686CrossRef
14.
go back to reference Jiang W, Liu Y, Zong R, Li Z, Yao W, Zhu Y (2015) Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3:18406–18412CrossRef Jiang W, Liu Y, Zong R, Li Z, Yao W, Zhu Y (2015) Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3:18406–18412CrossRef
15.
go back to reference Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J 20:10632–10635CrossRef Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J 20:10632–10635CrossRef
16.
go back to reference Zhao Y, Zhang X, Wang C, Zhao Y, Zhou H, Li J, Jin H (2017) The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property. Appl Surf Sci 412:207–213CrossRef Zhao Y, Zhang X, Wang C, Zhao Y, Zhou H, Li J, Jin H (2017) The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property. Appl Surf Sci 412:207–213CrossRef
17.
go back to reference Lv H, Liu Y, Tang H, Zhang P, Wang J (2017) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl Surf Sci 425:100–106CrossRef Lv H, Liu Y, Tang H, Zhang P, Wang J (2017) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl Surf Sci 425:100–106CrossRef
18.
go back to reference Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:1–5CrossRef Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:1–5CrossRef
19.
go back to reference Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297CrossRef Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297CrossRef
20.
go back to reference Liu P, Zhang L, Liu G, Cheng H (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770CrossRef Liu P, Zhang L, Liu G, Cheng H (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770CrossRef
21.
go back to reference Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. J Electroanal Chem 81:97–111CrossRef Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. J Electroanal Chem 81:97–111CrossRef
22.
go back to reference Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 Evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 Evolution from MoS2 nanocatalysts. Science 317:100–102CrossRef
23.
go back to reference Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRef Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRef
24.
go back to reference Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light Irradiation. ACS Nano 8:7078–7087CrossRef Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light Irradiation. ACS Nano 8:7078–7087CrossRef
25.
go back to reference Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303CrossRef Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303CrossRef
26.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
27.
go back to reference Li F, Li J, Cao Z, Lin X, Li X, Fang Y, An X, Fu Y, Jin J, Li R (2015) MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. J. Mater. Chem. A 3:21772–21778CrossRef Li F, Li J, Cao Z, Lin X, Li X, Fang Y, An X, Fu Y, Jin J, Li R (2015) MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. J. Mater. Chem. A 3:21772–21778CrossRef
28.
go back to reference Ma C, Qi X, Chen B, Bao S, Yin Z, Wu X, Luo Z, Wei J, Zhang H, Zhang H (2014) MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 6:5624–5629CrossRef Ma C, Qi X, Chen B, Bao S, Yin Z, Wu X, Luo Z, Wei J, Zhang H, Zhang H (2014) MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 6:5624–5629CrossRef
29.
go back to reference Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and Multiphoton bioimaging. Small 11:415–41648 Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and Multiphoton bioimaging. Small 11:415–41648
30.
go back to reference Xu Y, Yang M, Chen B, Wang X, Chen H, Kuang D, Su C (2017) A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 Reduction. J Am Chem Soc 16:5660–5660CrossRef Xu Y, Yang M, Chen B, Wang X, Chen H, Kuang D, Su C (2017) A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 Reduction. J Am Chem Soc 16:5660–5660CrossRef
31.
go back to reference Liu C, Kong D, Hsu P, Yuan H, Lee H, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini PA, Parker KM, Boehm AB, Cui Y (2016) Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol 11:1098–1106 Liu C, Kong D, Hsu P, Yuan H, Lee H, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini PA, Parker KM, Boehm AB, Cui Y (2016) Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol 11:1098–1106
32.
go back to reference Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3:2485–2534CrossRef Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3:2485–2534CrossRef
33.
go back to reference Oh I, Kye J, Hwang S (2012) Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 12:298–302CrossRef Oh I, Kye J, Hwang S (2012) Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 12:298–302CrossRef
34.
go back to reference Oh J, Deutsch TG, Yuan H, Branz HM (2011) Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ Sci 4:1690–1694CrossRef Oh J, Deutsch TG, Yuan H, Branz HM (2011) Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ Sci 4:1690–1694CrossRef
35.
go back to reference Sim U, Yang T, Moon J, An J, Hwang J, Seo J, Lee J, Kim KY, Lee J, Han S, Hong BH, Nam KT (2013) N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ Sci 6:3658–3664CrossRef Sim U, Yang T, Moon J, An J, Hwang J, Seo J, Lee J, Kim KY, Lee J, Han S, Hong BH, Nam KT (2013) N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ Sci 6:3658–3664CrossRef
36.
go back to reference Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456CrossRef Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456CrossRef
37.
go back to reference Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136CrossRef Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136CrossRef
38.
go back to reference Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21CrossRef Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21CrossRef
39.
go back to reference Alicisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 371:933–937CrossRef Alicisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 371:933–937CrossRef
40.
go back to reference Liu G, Niu P, Wang L, Lu GQ, Cheng H (2011) Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4−xNx photocatalysts through valence band fine-tuning. Catal. Sci. Technol. 1:222–225 Liu G, Niu P, Wang L, Lu GQ, Cheng H (2011) Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4−xNx photocatalysts through valence band fine-tuning. Catal. Sci. Technol. 1:222–225
41.
go back to reference Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQ, Cheng H (2010) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46:755–757CrossRef Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQ, Cheng H (2010) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46:755–757CrossRef
42.
go back to reference Pan J, Liu G, Lu G, Cheng QH (2011) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137CrossRef Pan J, Liu G, Lu G, Cheng QH (2011) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137CrossRef
Metadata
Title
Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution
Authors
Min Wang
Xiuxun Han
Yun Zhao
Jiajia Li
Peng Ju
Zhaomin Hao
Publication date
31-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1745-7

Other articles of this Issue 5/2018

Journal of Materials Science 5/2018 Go to the issue

Premium Partners