Skip to main content
Top

2010 | OriginalPaper | Chapter

10. Turbulence in the Cardiovascular System: Aortic Aneurysm as an Illustrative Example

Authors : Liang Ge, G.S. Kassab

Published in: Computational Cardiovascular Mechanics

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Turbulence is a fluid regime characterized by chaotic and stochastic changes of flow. The onset of turbulence can occur under disease conditions and is known to have adverse effects on the function of the cardiovascular (CV) system. This chapter outlines the basic features of turbulence in the CV system. As a specific example, simulation of turbulent flow in an abdominal aortic aneurysm (AAA) is presented. The simulated results show that transition to turbulence occurs in large aneurysms with high Reynolds number. Onset of turbulence is seen to drastically change the distribution of wall shear stress and fluid pressure. The general implications are enumerated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dasi LP, et al. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids. 2007;19:067105.CrossRef Dasi LP, et al. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids. 2007;19:067105.CrossRef
2.
go back to reference Stein P, Sabbah H. Measured turbulence and its effect on thrombus formation. Circ Res. 1974;35:608–14.CrossRef Stein P, Sabbah H. Measured turbulence and its effect on thrombus formation. Circ Res. 1974;35:608–14.CrossRef
3.
go back to reference Yoganathan AP, He Z, Jones SC. Fluid mechanics of heart valves. Ann Rev Biomed Eng. 2004;6:331–62.CrossRef Yoganathan AP, He Z, Jones SC. Fluid mechanics of heart valves. Ann Rev Biomed Eng. 2004;6:331–62.CrossRef
4.
go back to reference Davies PF, et al. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA. 1986;83:2114–7.CrossRef Davies PF, et al. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA. 1986;83:2114–7.CrossRef
5.
go back to reference Wassef M, et al. Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg. 2007;45:192–8.CrossRef Wassef M, et al. Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg. 2007;45:192–8.CrossRef
6.
go back to reference Peattie RA, Riehle TJ, Bluth EI. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng. 2004;126:438.CrossRef Peattie RA, Riehle TJ, Bluth EI. Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng. 2004;126:438.CrossRef
7.
go back to reference Salsac A, et al. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J Fluid Mech. 2006;560:19–51.MATHCrossRef Salsac A, et al. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J Fluid Mech. 2006;560:19–51.MATHCrossRef
8.
go back to reference Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys. 2007;225:1782–809.MathSciNetMATHCrossRef Ge L, Sotiropoulos F. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys. 2007;225:1782–809.MathSciNetMATHCrossRef
9.
go back to reference Moser UT, Vieli A. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology. 1989;171:487–92. Moser UT, Vieli A. Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology. 1989;171:487–92.
10.
go back to reference Hunt JCR, Wray A, Moin P. Eddies, stream and convergence zones in turbulent flows, Report CTR-S88 1988. Hunt JCR, Wray A, Moin P. Eddies, stream and convergence zones in turbulent flows, Report CTR-S88 1988.
12.
go back to reference Lee SE, et al. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech. 2008;41:2551–61.CrossRef Lee SE, et al. Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech. 2008;41:2551–61.CrossRef
13.
go back to reference Harter LP. Ultrasonic evaluation of abdominal aortic thrombus. J Ultrasound Med. 1982;1:315–8. Harter LP. Ultrasonic evaluation of abdominal aortic thrombus. J Ultrasound Med. 1982;1:315–8.
14.
go back to reference Ge L, et al. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng. doi: 10.1007/s10439-007-9411-x Ge L, et al. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng. doi: 10.1007/s10439-007-9411-x
15.
go back to reference Ku DN, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol. 1985;5:293–302.CrossRef Ku DN, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol. 1985;5:293–302.CrossRef
16.
go back to reference Bassiouny HS, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157–63.CrossRef Bassiouny HS, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation. 1998;98:157–63.CrossRef
17.
go back to reference Chesler NC, Ku DN, Galis ZS. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Physiol Heart Circ Physiol. 1999;277:2002–9. Chesler NC, Ku DN, Galis ZS. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Physiol Heart Circ Physiol. 1999;277:2002–9.
18.
go back to reference Campa J, Greenhalgh R, and Powell J. Elastin degradation in abdominal aortic aneurysms. Atherosclerosis. 1987;65:13–21.CrossRef Campa J, Greenhalgh R, and Powell J. Elastin degradation in abdominal aortic aneurysms. Atherosclerosis. 1987;65:13–21.CrossRef
19.
go back to reference Sho E, et al. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J Vasc Surg. 2004;39:601–12.CrossRef Sho E, et al. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J Vasc Surg. 2004;39:601–12.CrossRef
20.
go back to reference Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress role of c-Myc*. J Biol Chem. 2003;278:32994–9.CrossRef Magid R, Murphy TJ, Galis ZS. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress role of c-Myc*. J Biol Chem. 2003;278:32994–9.CrossRef
21.
go back to reference Platt MO, Ankeny RF, Jo H. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1784.CrossRef Platt MO, Ankeny RF, Jo H. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1784.CrossRef
22.
go back to reference Ferguson GG. Turbulence in human intracranial saccular aneurysms. J Neurosurg. 1970;33:485–97.CrossRef Ferguson GG. Turbulence in human intracranial saccular aneurysms. J Neurosurg. 1970;33:485–97.CrossRef
23.
go back to reference Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Ann Rev Biomed Eng. 2008;10. Humphrey JD, Taylor CA. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Ann Rev Biomed Eng. 2008;10.
24.
go back to reference Fung YBiomechanics: mechanical properties of living tissues. Berlin: Springer, 1993. Fung YBiomechanics: mechanical properties of living tissues. Berlin: Springer, 1993.
Metadata
Title
Turbulence in the Cardiovascular System: Aortic Aneurysm as an Illustrative Example
Authors
Liang Ge
G.S. Kassab
Copyright Year
2010
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0730-1_10