Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 6/2023

27-12-2022 | Original Article

Twin attentive deep reinforcement learning for multi-agent defensive convoy

Authors: Dongyu Fan, Haikuo Shen, Lijing Dong

Published in: International Journal of Machine Learning and Cybernetics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-agent defensive convoy helps provide critical safety for a leader agent. Escort agents work by coordinating their actions to protect the leader agent in the convoy. This paper investigates the multi-agent defensive convoy problem based on deep reinforcement learning and attention mechanism. To address the joint overestimation and suboptimal policy in multi-agent environments, a novel multi-agent twin attentive reinforcement learning method is proposed with a twin attentive critic and a delay attenuation policy. In addition, a variable temperature coefficient for maximum entropy is added to the learning process. The proposed method is evaluated on the designed defensive convoy environment and two public experimental environments, where our proposed method produces competitive performance compared to prior works. The contribution of each novel component is also extensively studied and analyzed. Further evaluations show that our method is robust to several adaptations in the defensive convoy environments including a changing number of escort agents and a changing number of dangers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Kaur N, Kaur H (2022) A multi-agent based evacuation planning for disaster management: a narrative review. Arch Comput Methods Eng 29:4085–4113 Kaur N, Kaur H (2022) A multi-agent based evacuation planning for disaster management: a narrative review. Arch Comput Methods Eng 29:4085–4113
2.
go back to reference Ben-Dor G, Ben-Elia E, Benenson I (2021) Population downscaling in multi-agent transportation simulations: a review and case study. Simul Model Pract Theory 108:102233 Ben-Dor G, Ben-Elia E, Benenson I (2021) Population downscaling in multi-agent transportation simulations: a review and case study. Simul Model Pract Theory 108:102233
3.
go back to reference Amirkhani A, Barshooi AH (2021) Consensus in multi-agent systems: a review. Artif Intell Rev 55:3897–3935 Amirkhani A, Barshooi AH (2021) Consensus in multi-agent systems: a review. Artif Intell Rev 55:3897–3935
4.
go back to reference Mahmoud MS (2020) Multiagent systems: introduction and coordination control. CRC Press, Boca RatonMATH Mahmoud MS (2020) Multiagent systems: introduction and coordination control. CRC Press, Boca RatonMATH
5.
go back to reference Hasan YA, Garg A, Sugaya S, Tapia L (2020) Defensive escort teams for navigation in crowds via multi-agent deep reinforcement learning. IEEE Robot Autom Lett 5(4):5645–5652 Hasan YA, Garg A, Sugaya S, Tapia L (2020) Defensive escort teams for navigation in crowds via multi-agent deep reinforcement learning. IEEE Robot Autom Lett 5(4):5645–5652
6.
go back to reference Perrusqu’ia A, Yu W, Li X (2021) Multi-agent reinforcement learning for redundant robot control in task-space. Int J Mach Learn Cybern 12:231–241 Perrusqu’ia A, Yu W, Li X (2021) Multi-agent reinforcement learning for redundant robot control in task-space. Int J Mach Learn Cybern 12:231–241
7.
go back to reference Ji G, Yan J, Du J, Yan W, Chen J, Lu Y, Rojas J, Cheng SS (2021) Towards safe control of continuum manipulator using shielded multiagent reinforcement learning. IEEE Robot Autom Lett 6(4):7461–7468 Ji G, Yan J, Du J, Yan W, Chen J, Lu Y, Rojas J, Cheng SS (2021) Towards safe control of continuum manipulator using shielded multiagent reinforcement learning. IEEE Robot Autom Lett 6(4):7461–7468
8.
go back to reference Ren L, Fan X, Cui J, Shen Z, Lv Y, Xiong G (2022) A multi-agent reinforcement learning method with route recorders for vehicle routing in supply chain management. IEEE Trans Intell Transp Syst 23(9):16410–16420 Ren L, Fan X, Cui J, Shen Z, Lv Y, Xiong G (2022) A multi-agent reinforcement learning method with route recorders for vehicle routing in supply chain management. IEEE Trans Intell Transp Syst 23(9):16410–16420
9.
go back to reference Kumar AS, Zhao L, Fernando X (2022) Multi-agent deep reinforcement learning-empowered channel allocation in vehicular networks. IEEE Trans Veh Technol 71(2):1726–1736 Kumar AS, Zhao L, Fernando X (2022) Multi-agent deep reinforcement learning-empowered channel allocation in vehicular networks. IEEE Trans Veh Technol 71(2):1726–1736
10.
go back to reference Panerati J, Zheng H, Zhou S, Xu J, Prorok A, Schoellig AP (2021) Learning to fly-a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control. In: 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 7512–7519 Panerati J, Zheng H, Zhou S, Xu J, Prorok A, Schoellig AP (2021) Learning to fly-a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control. In: 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 7512–7519
11.
go back to reference de Souza C, Newbury R, Cosgun A, Castillo P, Vidolov B, Kulić D (2021) Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot Autom Lett 6(3):4552–4559 de Souza C, Newbury R, Cosgun A, Castillo P, Vidolov B, Kulić D (2021) Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot Autom Lett 6(3):4552–4559
12.
go back to reference Xia Z, Du J, Wang J, Jiang C, Ren Y, Li G, Han Z (2022) Multi-agent reinforcement learning aided intelligent UAV swarm for target tracking. IEEE Trans Veh Technol 71(1):931–945 Xia Z, Du J, Wang J, Jiang C, Ren Y, Li G, Han Z (2022) Multi-agent reinforcement learning aided intelligent UAV swarm for target tracking. IEEE Trans Veh Technol 71(1):931–945
13.
go back to reference Sacco A, Esposito F, Marchetto G, Montuschi P (2021) Sustainable task offloading in UAV networks via multi-agent reinforcement learning. IEEE Trans Veh Technol 70(5):5003–5015 Sacco A, Esposito F, Marchetto G, Montuschi P (2021) Sustainable task offloading in UAV networks via multi-agent reinforcement learning. IEEE Trans Veh Technol 70(5):5003–5015
14.
go back to reference Zhang H, Cheng J, Zhang L, Li Y, Zhang W (2022) H2GNN: hierarchical-hops graph neural networks for multi-robot exploration in unknown environments. IEEE Robot Autom Lett 7(2):3435–3442 Zhang H, Cheng J, Zhang L, Li Y, Zhang W (2022) H2GNN: hierarchical-hops graph neural networks for multi-robot exploration in unknown environments. IEEE Robot Autom Lett 7(2):3435–3442
15.
go back to reference Xie J, Luo J, Peng Y, Xie S, Pu H, Li X, Su Z, Liu Y, Zhou R (2020) Data driven hybrid edge computing-based hierarchical task guidance for efficient maritime escorting with multiple unmanned surface vehicles. Peer-to-Peer Netw Appl 13(5):1788–1798 Xie J, Luo J, Peng Y, Xie S, Pu H, Li X, Su Z, Liu Y, Zhou R (2020) Data driven hybrid edge computing-based hierarchical task guidance for efficient maritime escorting with multiple unmanned surface vehicles. Peer-to-Peer Netw Appl 13(5):1788–1798
16.
go back to reference Ma J, Lu H, Xiao J, Zeng Z, Zheng Z (2020) Multi-robot target encirclement control with collision avoidance via deep reinforcement learning. J Intell Robot Syst 99(2):371–386 Ma J, Lu H, Xiao J, Zeng Z, Zheng Z (2020) Multi-robot target encirclement control with collision avoidance via deep reinforcement learning. J Intell Robot Syst 99(2):371–386
17.
go back to reference Gronauer S, Diepold K (2021) Multi-agent deep reinforcement learning: a survey. Artif Intell Rev 55:895–943 Gronauer S, Diepold K (2021) Multi-agent deep reinforcement learning: a survey. Artif Intell Rev 55:895–943
18.
go back to reference Nguyen TT, Nguyen ND, Nahavandi S (2020) Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans Cybern 50(9):3826–3839 Nguyen TT, Nguyen ND, Nahavandi S (2020) Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans Cybern 50(9):3826–3839
19.
go back to reference Sadhu AK, Konar A (2020) Multi-agent coordination: a reinforcement learning approach. Wiley, Hoboken Sadhu AK, Konar A (2020) Multi-agent coordination: a reinforcement learning approach. Wiley, Hoboken
20.
go back to reference Lyu X, Xiao Y, Daley B, Amato C (2021) Contrasting centralized and decentralized critics in multi-agent reinforcement learning. In: Proceedings of the 20th international conference on autonomous agents and multiagent systems, pp 844–852 Lyu X, Xiao Y, Daley B, Amato C (2021) Contrasting centralized and decentralized critics in multi-agent reinforcement learning. In: Proceedings of the 20th international conference on autonomous agents and multiagent systems, pp 844–852
21.
go back to reference Du W, Ding S (2021) A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications. Artif Intell Rev 54(5):3215–3238 Du W, Ding S (2021) A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications. Artif Intell Rev 54(5):3215–3238
22.
go back to reference Du W, Ding S, Zhang C, Du S (2021) Modified action decoder using Bayesian reasoning for multi-agent deep reinforcement learning. Int J Mach Learn Cybern 12(10):2947–2961 Du W, Ding S, Zhang C, Du S (2021) Modified action decoder using Bayesian reasoning for multi-agent deep reinforcement learning. Int J Mach Learn Cybern 12(10):2947–2961
23.
go back to reference Cao D, Zhao J, Hu W, Ding F, Huang Q, Chen Z, Blaabjerg F (2021) Data-driven multi-agent deep reinforcement learning for distribution system decentralized voltage control with high penetration of pvs. IEEE Trans Smart Grid 12(5):4137–4150 Cao D, Zhao J, Hu W, Ding F, Huang Q, Chen Z, Blaabjerg F (2021) Data-driven multi-agent deep reinforcement learning for distribution system decentralized voltage control with high penetration of pvs. IEEE Trans Smart Grid 12(5):4137–4150
24.
go back to reference Ye Z, Chen Y, Jiang X, Song G, Yang B, Fan S (2021) Improving sample efficiency in multi-agent actor-critic methods. Appl Intell 52:3691–3704 Ye Z, Chen Y, Jiang X, Song G, Yang B, Fan S (2021) Improving sample efficiency in multi-agent actor-critic methods. Appl Intell 52:3691–3704
25.
go back to reference Xu C, Liu S, Zhang C, Huang Y, Lu Z, Yang L (2021) Multi-agent reinforcement learning based distributed transmission in collaborative cloud-edge systems. IEEE Trans Veh Technol 70(2):1658–1672 Xu C, Liu S, Zhang C, Huang Y, Lu Z, Yang L (2021) Multi-agent reinforcement learning based distributed transmission in collaborative cloud-edge systems. IEEE Trans Veh Technol 70(2):1658–1672
26.
go back to reference Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in neural information processing systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017, pp 6379–6390 Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in neural information processing systems 30 (NIPS), Long Beach, CA, USA, 4–9 December 2017, pp 6379–6390
27.
go back to reference Zeng P, Cui S, Song C, Wang Z, Li G (2022) A multiagent deep deterministic policy gradient-based distributed protection method for distribution network. Neural Comput Appl Zeng P, Cui S, Song C, Wang Z, Li G (2022) A multiagent deep deterministic policy gradient-based distributed protection method for distribution network. Neural Comput Appl
28.
go back to reference Huang L, Fu M, Qu H, Wang S, Hu S (2021) A deep reinforcement learning-based method applied for solving multi-agent defense and attack problems. Expert Syst Appl 176:114896 Huang L, Fu M, Qu H, Wang S, Hu S (2021) A deep reinforcement learning-based method applied for solving multi-agent defense and attack problems. Expert Syst Appl 176:114896
29.
go back to reference Chen X, Liu G (2021) Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet Things J 8(13):10843–10856 Chen X, Liu G (2021) Energy-efficient task offloading and resource allocation via deep reinforcement learning for augmented reality in mobile edge networks. IEEE Internet Things J 8(13):10843–10856
30.
go back to reference Yang Y, Li B, Zhang S, Zhao W, Zhang H (2021) Cooperative proactive eavesdropping based on deep reinforcement learning. IEEE Wirel Commun Lett 10(9):1857–1861 Yang Y, Li B, Zhang S, Zhao W, Zhang H (2021) Cooperative proactive eavesdropping based on deep reinforcement learning. IEEE Wirel Commun Lett 10(9):1857–1861
31.
go back to reference Wang L, Wang K, Pan C, Xu W, Aslam N, Hanzo L (2021) Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing. IEEE Trans Cogn Commun Network 7(1):73–84 Wang L, Wang K, Pan C, Xu W, Aslam N, Hanzo L (2021) Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing. IEEE Trans Cogn Commun Network 7(1):73–84
32.
go back to reference Wu T, Zhou P, Wang B, Li A, Tang X, Xu Z, Chen K, Ding X (2021) Joint traffic control and multi-channel reassignment for core backbone network in SDN-IoT: a multi-agent deep reinforcement learning approach. IEEE Trans Netw Sci Eng 8(1):231–245MathSciNet Wu T, Zhou P, Wang B, Li A, Tang X, Xu Z, Chen K, Ding X (2021) Joint traffic control and multi-channel reassignment for core backbone network in SDN-IoT: a multi-agent deep reinforcement learning approach. IEEE Trans Netw Sci Eng 8(1):231–245MathSciNet
33.
go back to reference Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep reinforcement learning. In: 4th international conference on learning representations (ICLR), San Juan, Puerto Rico, May 2–4, 2016 Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep reinforcement learning. In: 4th international conference on learning representations (ICLR), San Juan, Puerto Rico, May 2–4, 2016
34.
go back to reference Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533 Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533
35.
go back to reference Hasselt Hv, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, February 12–17, 2016, Phoenix, Arizona, USA, pp 2094–2100 Hasselt Hv, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, February 12–17, 2016, Phoenix, Arizona, USA, pp 2094–2100
36.
go back to reference Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. In: Proceedings of the 35th international conference on machine learning (ICML), Stockholm Sweden, 10–15 July, 2018, vol 80, pp 1582–1591 Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. In: Proceedings of the 35th international conference on machine learning (ICML), Stockholm Sweden, 10–15 July, 2018, vol 80, pp 1582–1591
37.
go back to reference Zhang F, Li J, Li Z (2020) A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition environment. Neurocomputing 411:206–215 Zhang F, Li J, Li Z (2020) A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition environment. Neurocomputing 411:206–215
38.
go back to reference Chaudhuri K, Salakhutdinov R (2019) Actor-attention-critic for multi-agent reinforcement learning. In: Proceedings of the 36th international conference on machine learning (ICML), 9–15 June 2019, Long Beach, California, USA Chaudhuri K, Salakhutdinov R (2019) Actor-attention-critic for multi-agent reinforcement learning. In: Proceedings of the 36th international conference on machine learning (ICML), 9–15 June 2019, Long Beach, California, USA
39.
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, CambridgeMATH
40.
go back to reference Gupta S, Singal G, Garg D (2021) Deep reinforcement learning techniques in diversified domains: a survey. Arch Comput Methods Eng 28:4715–4754 Gupta S, Singal G, Garg D (2021) Deep reinforcement learning techniques in diversified domains: a survey. Arch Comput Methods Eng 28:4715–4754
41.
go back to reference Silver D, Huang A, Maddison C et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489 Silver D, Huang A, Maddison C et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489
42.
go back to reference Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550:354–359 Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550:354–359
43.
go back to reference Jin Z, Wu J, Liu A, Zhang W-A, Yu L (2022) Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans Ind Electron 69(2):1898–1908 Jin Z, Wu J, Liu A, Zhang W-A, Yu L (2022) Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans Ind Electron 69(2):1898–1908
44.
go back to reference Arents J, Greitans M (2022) Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl Sci 12(2):937 Arents J, Greitans M (2022) Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl Sci 12(2):937
45.
go back to reference Cui F, Cui Q, Song Y (2021) A survey on learning-based approaches for modeling and classification of human-machine dialog systems. IEEE Trans Neural Netw Learn Syst 32(4):1418–1432 Cui F, Cui Q, Song Y (2021) A survey on learning-based approaches for modeling and classification of human-machine dialog systems. IEEE Trans Neural Netw Learn Syst 32(4):1418–1432
46.
go back to reference Mekrache A, Bradai A, Moulay E, Dawaliby S (2022) Deep reinforcement learning techniques for vehicular networks: recent advances and future trends towards 6G. Veh Commun 33:100398 Mekrache A, Bradai A, Moulay E, Dawaliby S (2022) Deep reinforcement learning techniques for vehicular networks: recent advances and future trends towards 6G. Veh Commun 33:100398
47.
go back to reference Le N, Rathour VS, Yamazaki K, Luu K, Savvides M (2022) Deep reinforcement learning in computer vision: a comprehensive survey. Artif Intell Rev 55(4):2733–2819 Le N, Rathour VS, Yamazaki K, Luu K, Savvides M (2022) Deep reinforcement learning in computer vision: a comprehensive survey. Artif Intell Rev 55(4):2733–2819
48.
go back to reference Hasselt H (2010) Double q-learning. In: Advances in neural information processing systems, December 6-9, 2010, Vancouver, British Columbia, Canada Hasselt H (2010) Double q-learning. In: Advances in neural information processing systems, December 6-9, 2010, Vancouver, British Columbia, Canada
49.
go back to reference Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: International conference on machine learning, pp 387–395 Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: International conference on machine learning, pp 387–395
50.
go back to reference Correia AdS, Colombini EL (2022) Attention, please! a survey of neural attention models in deep learning. Artif Intell Rev 55:6037–6124 Correia AdS, Colombini EL (2022) Attention, please! a survey of neural attention models in deep learning. Artif Intell Rev 55:6037–6124
51.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30, 2017, December 4–9, 2017, Long Beach, CA, USA, pp 5998–6008 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, vol 30, 2017, December 4–9, 2017, Long Beach, CA, USA, pp 5998–6008
52.
go back to reference Long Y, Xiang R, Lu Q, Huang C-R, Li M (2021) Improving attention model based on cognition grounded data for sentiment analysis. IEEE Trans Affect Comput 12(4):900–912 Long Y, Xiang R, Lu Q, Huang C-R, Li M (2021) Improving attention model based on cognition grounded data for sentiment analysis. IEEE Trans Affect Comput 12(4):900–912
53.
go back to reference Li X, Liu L, Tu Z, Li G, Shi S, Meng MQ-H (2021) Attending from foresight: a novel attention mechanism for neural machine translation. IEEE/ACM Trans Audio Speech Lang Process 29:2606–2616 Li X, Liu L, Tu Z, Li G, Shi S, Meng MQ-H (2021) Attending from foresight: a novel attention mechanism for neural machine translation. IEEE/ACM Trans Audio Speech Lang Process 29:2606–2616
54.
go back to reference Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: transformers for image recognition at scale. In: 9th international conference on learning representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16x16 words: transformers for image recognition at scale. In: 9th international conference on learning representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021
55.
go back to reference Liang D, Chen Q, Liu Y (2021) Gated multi-attention representation in reinforcement learning. Knowl-Based Syst 233:107535 Liang D, Chen Q, Liu Y (2021) Gated multi-attention representation in reinforcement learning. Knowl-Based Syst 233:107535
56.
go back to reference Fang K, Toshev A, Fei-Fei L, Savarese S (2019) Scene memory transformer for embodied agents in long-horizon tasks. In: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, pp 538–547 Fang K, Toshev A, Fei-Fei L, Savarese S (2019) Scene memory transformer for embodied agents in long-horizon tasks. In: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, pp 538–547
57.
go back to reference Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning representations (ICLR 2015). ICLR, San Diego, CA, USA Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference on learning representations (ICLR 2015). ICLR, San Diego, CA, USA
Metadata
Title
Twin attentive deep reinforcement learning for multi-agent defensive convoy
Authors
Dongyu Fan
Haikuo Shen
Lijing Dong
Publication date
27-12-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 6/2023
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01759-5

Other articles of this Issue 6/2023

International Journal of Machine Learning and Cybernetics 6/2023 Go to the issue