Skip to main content
Top

2019 | OriginalPaper | Chapter

Two-Dimensional Aerodynamic Loads of Space Shuttle Thermal Protection System Considering Steady Internal Flow

Authors : Yupeng Feng, Wei Xia

Published in: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Thermal Protection System (TPS) in Space Shuttle is assembled by the ceramic tile, the strain isolation pad (SIP) and the substrate structure. The existent experiment data reveals that the pressure distribution in the gaps and in the SIP has important effect on the aerodynamic load of the tile. Restricted by the computational capacity decades ago, an approximated multi-tile flow model based on the porous media flow was proposed to analyze the aerodynamic load for Shuttle tiles. The present work utilizes computational fluid dynamic (CFD) technology to reexamine the effects of steady internal flow on the aerodynamic load of the tile. The two-dimensional TPS model is established by adding tile-SIP assembly on the surface of airfoil. The far-field flow speed is assumed at transonic regime to simulate the critical load condition with shock wave on the tile. The internal flow in the gaps and flow through the SIP are calculated by solving the Navier-Stokes equation. The Spalart-Allmaras turbulence model is adopted. The pressure distributions on the top of the tile, in the gaps and along the bond line between the tile and the SIP are obtained. Numerical results show: The strongest aerodynamic load is at Xs/L = 0.67; when the permeability of SIP is increasing, the moment in Z-direction and the force in Y-direction are decreasing and the force in X-direction is increasing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cooper PA, Holloway PF (1981) The shuttle tile story. AIAA Cooper PA, Holloway PF (1981) The shuttle tile story. AIAA
2.
go back to reference Monti R, Fumo MDS, Savino R (2006) Thermal shielding of a reentry vehicle by ultra-high-temperature ceramic materials. J Thermophys Heat Transf 20(3):500–506CrossRef Monti R, Fumo MDS, Savino R (2006) Thermal shielding of a reentry vehicle by ultra-high-temperature ceramic materials. J Thermophys Heat Transf 20(3):500–506CrossRef
3.
go back to reference Rodriguez AC, Snapp CG (2011) Orbiter thermal protection system lessons learned. AIAA AIAA-2011-7308 Rodriguez AC, Snapp CG (2011) Orbiter thermal protection system lessons learned. AIAA AIAA-2011-7308
4.
go back to reference Wu D, Wang Y, Gao Z, Yang J (2015) Insulation performance of heat-resistant material for high-speed aircraft under thermal environments. J Mater Eng Perform 24(9):3373–3385CrossRef Wu D, Wang Y, Gao Z, Yang J (2015) Insulation performance of heat-resistant material for high-speed aircraft under thermal environments. J Mater Eng Perform 24(9):3373–3385CrossRef
5.
go back to reference Yamada T, Matsuda S, Okuyama K et al (2008) Lessons learned from the recovered heatshield of the USERS REV capsule. Acta Astronaut 62:192–202CrossRef Yamada T, Matsuda S, Okuyama K et al (2008) Lessons learned from the recovered heatshield of the USERS REV capsule. Acta Astronaut 62:192–202CrossRef
6.
go back to reference Blevins RD, Holehouse I (1993) Thermoacoustic loads and fatigue of hypersonic vehicle skin panels. J Aircr 30(6):971–978CrossRef Blevins RD, Holehouse I (1993) Thermoacoustic loads and fatigue of hypersonic vehicle skin panels. J Aircr 30(6):971–978CrossRef
7.
go back to reference Bertin JJ, Cummings RM (2003) Fifty years of hypersonics: where we’ve been, where we’re going. Prog Aerosp Sci 39:511–536CrossRef Bertin JJ, Cummings RM (2003) Fifty years of hypersonics: where we’ve been, where we’re going. Prog Aerosp Sci 39:511–536CrossRef
8.
go back to reference Muraca RJ, Coe CF, Tulinius JR (1982) Shuttle tile environments and loads. AIAA AIAA-82-0631 Muraca RJ, Coe CF, Tulinius JR (1982) Shuttle tile environments and loads. AIAA AIAA-82-0631
9.
go back to reference Petley DH, Alexander W, Ivey GW et al (1984) Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system. NASA TP-2255 Petley DH, Alexander W, Ivey GW et al (1984) Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system. NASA TP-2255
10.
go back to reference Lawing PL (1987) A prediction method for flow in the shuttle tile strain isolation pad. AIAA AIAA-87-1510 Lawing PL (1987) A prediction method for flow in the shuttle tile strain isolation pad. AIAA AIAA-87-1510
11.
go back to reference Leite PHM, Santos WFN (2015) Computational analysis of a rarefied hypersonic flow over combined gap/step geometries. Prog Flight Phys 7(2015):369–394CrossRef Leite PHM, Santos WFN (2015) Computational analysis of a rarefied hypersonic flow over combined gap/step geometries. Prog Flight Phys 7(2015):369–394CrossRef
12.
go back to reference Dwoyer DL, Newman PA, Thames FC et al (1981) A tile-gap flow model for use in aerodynamic loads assessment of space shuttle thermal protection system: parallel gap faces. NASA TM-83151 Dwoyer DL, Newman PA, Thames FC et al (1981) A tile-gap flow model for use in aerodynamic loads assessment of space shuttle thermal protection system: parallel gap faces. NASA TM-83151
13.
go back to reference Feng Y, Xia W, Jiang J et al (2016) Transonic aerodynamic loads of airfoil considering internal flow of gaps. Flight Dyn 34(6):15–19 Feng Y, Xia W, Jiang J et al (2016) Transonic aerodynamic loads of airfoil considering internal flow of gaps. Flight Dyn 34(6):15–19
14.
go back to reference Lawing PL, Nystrom DM (1980) Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: high density tile, low density tile, densified low density tile, and strain isolation pad. NASA TM-81891 Lawing PL, Nystrom DM (1980) Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: high density tile, low density tile, densified low density tile, and strain isolation pad. NASA TM-81891
15.
go back to reference Xie F, Song W, Han Z (2009) Numerical study of high-resolution scheme based on preconditioning method. J Aircr 46(2):520–525CrossRef Xie F, Song W, Han Z (2009) Numerical study of high-resolution scheme based on preconditioning method. J Aircr 46(2):520–525CrossRef
Metadata
Title
Two-Dimensional Aerodynamic Loads of Space Shuttle Thermal Protection System Considering Steady Internal Flow
Authors
Yupeng Feng
Wei Xia
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3305-7_13

Premium Partner