Skip to main content
Top
Published in: Wireless Personal Communications 2/2017

15-10-2016

Two Stage Grid Classification Based Algorithm for the Identification of Fields Under a Wireless Sensor Network Monitored Area

Authors: Tripatjot Singh Panag, J. S. Dhillon

Published in: Wireless Personal Communications | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of scheduling of sensors to maximize the lifetime of a wireless sensor network (WSN) requires the sensors to be divided into the maximum possible number of disjoint complete coverage sets. The maximum possible number is determined by the most sparsely covered region, called critical region. To identify the critical region, the monitored area is divided into fields. This paper presents a novel two stage grid classification based algorithm to identify fields in a WSN monitored area divided into grids with a sensor membership vector (SMV) created for each grid. The grids having equal length of the SMV are clubbed to form groups. Within a group, the grids having identical SMV are further aggregated to form fields. The execution time of the proposed algorithm is improved by comparing the SMV of a grid with those of the other grids in its respective group only instead of all the grids in the monitored area. As long as the number of grids remains unchanged, the execution time is also less sensitive to change in the number and sensing ranges of the deployed sensors because the SMVs of the grids are compared instead of the grids covered by each sensor. The results of the algorithm are validated by comparing its performance with the conventional algorithms. The effect of variation in the number and sensing ranges of the deployed sensors on the fields formed, the sensors covering the critical field and the lifetime of the WSN have also been analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [series editorial]. IEEE Communications Magazine, 51(7), 106.CrossRef Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [series editorial]. IEEE Communications Magazine, 51(7), 106.CrossRef
2.
go back to reference Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.CrossRef Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.CrossRef
3.
go back to reference Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.CrossRef Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.CrossRef
4.
go back to reference Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.CrossRef Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.CrossRef
5.
go back to reference Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.CrossRef Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.CrossRef
6.
go back to reference Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.CrossRef Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.CrossRef
7.
go back to reference Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.CrossRef Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.CrossRef
8.
go back to reference Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.MathSciNetCrossRefMATH Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.MathSciNetCrossRefMATH
9.
go back to reference Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay- assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.CrossRef Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay- assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.CrossRef
10.
go back to reference Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
11.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
12.
go back to reference Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.CrossRef Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.CrossRef
13.
go back to reference Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks – a networking perspective. New Jersey: Wiley.MATH Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks – a networking perspective. New Jersey: Wiley.MATH
14.
go back to reference Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.CrossRef
15.
go back to reference Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef
16.
go back to reference Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.CrossRef
17.
go back to reference Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integratedwith mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.MathSciNetCrossRefMATH Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integratedwith mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.MathSciNetCrossRefMATH
18.
go back to reference Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.CrossRef Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.CrossRef
19.
go back to reference Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189.
20.
go back to reference Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRef Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRef
21.
go back to reference Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetCrossRefMATH Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.MathSciNetCrossRefMATH
22.
go back to reference Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.CrossRef Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.CrossRef
23.
go back to reference Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRef
24.
go back to reference Sangwan, A., & Singh, R. P. (2014). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef Sangwan, A., & Singh, R. P. (2014). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef
25.
go back to reference Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef
26.
go back to reference Ramar, R., & Shanmugasundaram, R. (2015). Connected k-coverage topology for area monitoring in wireless sensor networks. Wireless Personal Communications, 84(2), 1051–1067.CrossRef Ramar, R., & Shanmugasundaram, R. (2015). Connected k-coverage topology for area monitoring in wireless sensor networks. Wireless Personal Communications, 84(2), 1051–1067.CrossRef
27.
go back to reference Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.CrossRef Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.CrossRef
28.
go back to reference Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.CrossRefMATH Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.CrossRefMATH
29.
go back to reference Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.CrossRef Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.CrossRef
30.
go back to reference Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.CrossRef Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.CrossRef
31.
go back to reference Kumar, S., & Lobiyal, D. K. (2013). Impact of interference in wireless sensor networks. Wireless Personal Communications, 74(2), 683–701.CrossRef Kumar, S., & Lobiyal, D. K. (2013). Impact of interference in wireless sensor networks. Wireless Personal Communications, 74(2), 683–701.CrossRef
32.
go back to reference Mostafaei, H., & Meybodi, M. R. (2012). Maximizing lifetime of target coverage in wireless sensor networks usng learning automata. Wireless Personal Communications, 71(2), 1461–1477.CrossRef Mostafaei, H., & Meybodi, M. R. (2012). Maximizing lifetime of target coverage in wireless sensor networks usng learning automata. Wireless Personal Communications, 71(2), 1461–1477.CrossRef
33.
go back to reference Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications, 75(1), 447–463.CrossRef Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications, 75(1), 447–463.CrossRef
34.
go back to reference Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.CrossRef Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.CrossRef
35.
go back to reference Mostafaei, H., & Meybodi, M. R. (2014). An energy efficient barrier coverage algorithm for wireless sensor networks. Wireless Personal Communications, 77(3), 2099–2115.CrossRef Mostafaei, H., & Meybodi, M. R. (2014). An energy efficient barrier coverage algorithm for wireless sensor networks. Wireless Personal Communications, 77(3), 2099–2115.CrossRef
36.
go back to reference Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.CrossRef Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.CrossRef
37.
go back to reference Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.CrossRef Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.CrossRef
38.
go back to reference Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRef Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.CrossRef
39.
go back to reference Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetCrossRef Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.MathSciNetCrossRef
40.
go back to reference Dhillon, S.S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003 (Vol. 3, pp. 1609–1614). LA, USA. Dhillon, S.S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003 (Vol. 3, pp. 1609–1614). LA, USA.
41.
go back to reference Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.CrossRef Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.CrossRef
42.
go back to reference Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.CrossRef Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.CrossRef
43.
go back to reference Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.CrossRef Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.CrossRef
44.
go back to reference Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.CrossRef Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.CrossRef
45.
go back to reference Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRefMATH Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.CrossRefMATH
46.
go back to reference Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.CrossRef Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.CrossRef
47.
go back to reference Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.CrossRef Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.CrossRef
48.
go back to reference Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.CrossRef Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.CrossRef
49.
go back to reference Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.CrossRef Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.CrossRef
50.
go back to reference Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef
51.
go back to reference Baek, S. J., Veciana, G. D., & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.CrossRef Baek, S. J., Veciana, G. D., & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.CrossRef
52.
go back to reference Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of IEEE international conference on communications (Vol. 2, pp. 472–476). Helsinki. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of IEEE international conference on communications (Vol. 2, pp. 472–476). Helsinki.
53.
go back to reference Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.CrossRef Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.CrossRef
54.
go back to reference Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.CrossRef
55.
go back to reference Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.CrossRef Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.CrossRef
56.
go back to reference Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.CrossRef Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.CrossRef
57.
go back to reference Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.CrossRef
58.
go back to reference Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In: Proceedings of 3rd international symposium on information processing in sensor networks (pp. 424–432). Berkley, USA. Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In: Proceedings of 3rd international symposium on information processing in sensor networks (pp. 424–432). Berkley, USA.
59.
go back to reference Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.CrossRef Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.CrossRef
60.
go back to reference Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In: Proceedings of design, automation and test in Europe conference and exhibition (pp. 35–39). Paris. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In: Proceedings of design, automation and test in Europe conference and exhibition (pp. 35–39). Paris.
61.
go back to reference Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover. Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover.
Metadata
Title
Two Stage Grid Classification Based Algorithm for the Identification of Fields Under a Wireless Sensor Network Monitored Area
Authors
Tripatjot Singh Panag
J. S. Dhillon
Publication date
15-10-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3813-8

Other articles of this Issue 2/2017

Wireless Personal Communications 2/2017 Go to the issue