Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Two Ways into Complexity

Author : Andrea Zeppi

Published in: Language in Complexity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic hypothesis (DH) about cognition has often been presented as an alternative to the widely popular computational hypothesis (CH) in cognitive science. While the theoretical distance that separates these two approaches may seem to be significant, there are reasons, we argue, to reconsider the relationship between the dynamical and computational ways of understanding the cognition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this paper we will not address the following critical points: the semantics/syntax distinction (Putnam 1960; Searle 1980, 1992) or the computability tout-court of cognitive processes (Penrose 1999).
 
2
Since artificial cognitive system may well be computational, DH is a theoretical hypothesis only over the nature of cognitive systems that are found in nature and that have therefore naturally evolved.
 
3
See van Gelder (1998, p. 618) for a series of examples of dynamical systems in physics and mathematics.
 
4
The space where we find all the possible state in which the system may be in.
 
5
A branch of pure mathematics concerned with the behavior of complex systems (Alligood et al. 1997).
 
6
Since there is no discrete state subdivision different processes may well occur simultaneously but with different rates of change in the phase space.
 
7
However, while dynamicists are keen to aknowledge artificial neural network as genuine dynamical systems, they often consider connectionism itself as an unfinished attempt at overcoming computationalism (van Gelder and Port 1998, p. 32).
 
8
That, on the other hand, comes from the thick myelin sheath that distinguishes the human nervous system (Changizi 2001, 2007).
 
9
In particular the relation between the total cortical sheet area and the mean cortical synapse density shows that neurons have at they disposal only a limited space of gray area eligible for connectivity.
 
10
See, for example, the halting problem (Davis 2004; Turing 1936).
 
11
The length of the string representing the input.
 
12
That stands for Fixed Paramenter Cognition.
 
Literature
go back to reference Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1997). Chaos: An introduction to dynamical systems, Textbooks in Mathematical Sciences. Berlin: Springer. Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1997). Chaos: An introduction to dynamical systems, Textbooks in Mathematical Sciences. Berlin: Springer.
go back to reference Anderson, J. R. (1990). The adaptive character of thought. Psychology Press. Anderson, J. R. (1990). The adaptive character of thought. Psychology Press.
go back to reference Arora, S., & Barak, B. (2009). Computational complexity. Cambridge: Cambridge University Press.CrossRefMATH Arora, S., & Barak, B. (2009). Computational complexity. Cambridge: Cambridge University Press.CrossRefMATH
go back to reference Byrne, D. (1998). Complexity and postmodernism. Journal of Artificial Societies and Social Simulation, vol. 2. London and New York: Routledge. Byrne, D. (1998). Complexity and postmodernism. Journal of Artificial Societies and Social Simulation, vol. 2. London and New York: Routledge.
go back to reference Changizi, M. A. (2001). Principles underlying Mammalian neocortical scaling. Biological Cybernetics, 84(3), 207–215.CrossRef Changizi, M. A. (2001). Principles underlying Mammalian neocortical scaling. Biological Cybernetics, 84(3), 207–215.CrossRef
go back to reference Changizi, M. A. (2007). Scaling the brain and its connections: Evolution of nervous systems 3, 167–180. Changizi, M. A. (2007). Scaling the brain and its connections: Evolution of nervous systems 3, 167–180.
go back to reference Cherniak, C. (1990). The bounded brain: Toward quantitative neuroanatomy. Journal of Cognitive Neuroscience, 2(1), 58–68.CrossRef Cherniak, C. (1990). The bounded brain: Toward quantitative neuroanatomy. Journal of Cognitive Neuroscience, 2(1), 58–68.CrossRef
go back to reference Clark, A., & Chalmers, D. (1998). The extended mind. Analysis 7–19. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis 7–19.
go back to reference Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). ACM. Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158). ACM.
go back to reference Cordeschi, R., & Frixione, M. (2007). Computationalism under attack In M. Marraffa, M. De Caro, & F. Ferretti (Eds.), Cartographies of the Mind (pp. 37–49). Cordeschi, R., & Frixione, M. (2007). Computationalism under attack In M. Marraffa, M. De Caro, & F. Ferretti (Eds.), Cartographies of the Mind (pp. 37–49).
go back to reference Cummins, R. (2000). How does it work? ‘Versus’ what are the laws?: Two conceptions of psychological explanation. Explanation and Cognition, 117–144. Cummins, R. (2000). How does it work? ‘Versus’ what are the laws?: Two conceptions of psychological explanation. Explanation and Cognition, 117–144.
go back to reference Davis, M. (2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions. Courier Dover Publications. Davis, M. (2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions. Courier Dover Publications.
go back to reference Downey, R. G., Fellows, M. R., & Stege, U. (1999). Parameterized complexity: A framework for systematically confronting computational intractability. In Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future, AMS-DIMACS Proceedings Series (vol. 49, pp. 49–99). Downey, R. G., Fellows, M. R., & Stege, U. (1999). Parameterized complexity: A framework for systematically confronting computational intractability. In Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future, AMS-DIMACS Proceedings Series (vol. 49, pp. 49–99).
go back to reference Enderton, H. B. (1977). Elements of Recursion theory. Studies in Logic and the Foundations of Mathematics, 90, 527–566.MathSciNetCrossRef Enderton, H. B. (1977). Elements of Recursion theory. Studies in Logic and the Foundations of Mathematics, 90, 527–566.MathSciNetCrossRef
go back to reference Fodor, J. (1975). The language of thought. New York: Thomas Crowell. Fodor, J. (1975). The language of thought. New York: Thomas Crowell.
go back to reference Garey, M. R., & Johnson, D. S. (1979), Computers and intractability (vol. 174). New York: Freeman. Garey, M. R., & Johnson, D. S. (1979), Computers and intractability (vol. 174). New York: Freeman.
go back to reference Goldreich, O. (Ed.). (2008). Computational complexity. A conceptual perspetive. Cambridge: Cambridge University Press. Goldreich, O. (Ed.). (2008). Computational complexity. A conceptual perspetive. Cambridge: Cambridge University Press.
go back to reference Horgan, T., & Tienson, J. (2006). Cognitive systems as dynamical systems. The Behavioral and Brain Sciences, 17(3), 199–204. Horgan, T., & Tienson, J. (2006). Cognitive systems as dynamical systems. The Behavioral and Brain Sciences, 17(3), 199–204.
go back to reference Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.
go back to reference Jerison, H. J. (1991). Brain size and the evolution of mind. American Museum of Natural History. Jerison, H. J. (1991). Brain size and the evolution of mind. American Museum of Natural History.
go back to reference Karp, R. M. (1972). Reducibility among combinatorial problems. Springer. Karp, R. M. (1972). Reducibility among combinatorial problems. Springer.
go back to reference Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6)(June), 296–305. Marois, R., & Ivanoff, J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6)(June), 296–305.
go back to reference Massaro, D. W., & Cowan, N. (1993). Information processing models: Microscopes of the mind. Annual Review of Psychology, 44(1), 383–425.CrossRef Massaro, D. W., & Cowan, N. (1993). Information processing models: Microscopes of the mind. Annual Review of Psychology, 44(1), 383–425.CrossRef
go back to reference McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.MathSciNetCrossRefMATH McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.MathSciNetCrossRefMATH
go back to reference McLaughlin, B. P. (2003). Computationalism, connectionism, and the philosophy of mind. In The Blackwell (Ed.), Guide to the Philosophy of Computing and Information. Cambridge: Blackwell Publishing Ltd. McLaughlin, B. P. (2003). Computationalism, connectionism, and the philosophy of mind. In The Blackwell (Ed.), Guide to the Philosophy of Computing and Information. Cambridge: Blackwell Publishing Ltd.
go back to reference Penrose, R. (1999). Precis of the emperor’s new mind: Concerning computers, minds, and the laws of physics. Behavioral and Brain Sciences, 13(04), 643–655.CrossRef Penrose, R. (1999). Precis of the emperor’s new mind: Concerning computers, minds, and the laws of physics. Behavioral and Brain Sciences, 13(04), 643–655.CrossRef
go back to reference Petitot, J. (1992). Physique Du Sens. Paris: Editions Du CNRS. Petitot, J. (1992). Physique Du Sens. Paris: Editions Du CNRS.
go back to reference Petitot, J. (1999). Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive science. Stanford University Press. Petitot, J. (1999). Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive science. Stanford University Press.
go back to reference Piccinini, G. (2006). Computation without representation. Philosophical Studies, 137(2)(September 21), 205–241. Piccinini, G. (2006). Computation without representation. Philosophical Studies, 137(2)(September 21), 205–241.
go back to reference Piccinini, G. (2010a). The Resilience of Computationalism. Philosophy of Science, 77(5), 852–861. Piccinini, G. (2010a). The Resilience of Computationalism. Philosophy of Science, 77(5), 852–861.
go back to reference Piccinini, G. (2010b). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Piccinini, G. (2010b). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy.
go back to reference Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453–488.CrossRef Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453–488.CrossRef
go back to reference Putnam, H. (1960). Mind and machines. Mind, Language and Reality, 362–385. Putnam, H. (1960). Mind and machines. Mind, Language and Reality, 362–385.
go back to reference Putnam, H. (1967). The nature of mental states. Mind, Language and Reality, 429–440. Putnam, H. (1967). The nature of mental states. Mind, Language and Reality, 429–440.
go back to reference Roth, G. (2012). Is the human brain unique?. In The Theory of Evolution and Its Impact (pp. 175–187). Springer. Roth, G. (2012). Is the human brain unique?. In The Theory of Evolution and Its Impact (pp. 175–187). Springer.
go back to reference Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Exploration in the microstructure of cognition. Cambridge: MIT Press. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Exploration in the microstructure of cognition. Cambridge: MIT Press.
go back to reference Saltzman, E. L. (1995). Dynamics and coordinate systems in skilled sensorimotor activity. Mind as Motion: Explorations in the Dynamics of Cognition, 149–173. Saltzman, E. L. (1995). Dynamics and coordinate systems in skilled sensorimotor activity. Mind as Motion: Explorations in the Dynamics of Cognition, 149–173.
go back to reference Searle, J. R. (1992). The rediscovery of the mind. MIT press. Searle, J. R. (1992). The rediscovery of the mind. MIT press.
go back to reference Searle, J. R. (1980). Minds, brains, and programs. In J. Haugeland (Ed.), Behavioral and Brain Sciences (vol. 3, no. 03, p. 417). Searle, J. R. (1980). Minds, brains, and programs. In J. Haugeland (Ed.), Behavioral and Brain Sciences (vol. 3, no. 03, p. 417).
go back to reference Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 1–20.CrossRef Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41(1), 1–20.CrossRef
go back to reference Steiglitz, K., & Papadimitriou, C. H. (1982). Combinatorial optimization: Algorithms and complexity. New Jersey: Printice-Hall.MATH Steiglitz, K., & Papadimitriou, C. H. (1982). Combinatorial optimization: Algorithms and complexity. New Jersey: Printice-Hall.MATH
go back to reference Thelen, E. (1995). Time-scale dynamics and the development of an embodied cognition. Mind as Motion: Explorations in the Dynamics of Cognition, 69–100. Thelen, E. (1995). Time-scale dynamics and the development of an embodied cognition. Mind as Motion: Explorations in the Dynamics of Cognition, 69–100.
go back to reference Thom, R. (1988). Esquisse D’une Sémiophysique. Physique Aristotéliciene et Théorie Des Catastrophes. Interéditions, Paris. Thom, R. (1988). Esquisse D’une Sémiophysique. Physique Aristotéliciene et Théorie Des Catastrophes. Interéditions, Paris.
go back to reference Townsend, J. T., & Busemeyer, J. (1995). Dynamic representation of decision-making. Mind as Motion: Explorations in the Dynamics of Cognition, 101–120. Townsend, J. T., & Busemeyer, J. (1995). Dynamic representation of decision-making. Mind as Motion: Explorations in the Dynamics of Cognition, 101–120.
go back to reference Trautteur, G. (1999). Analog computation and the continuum-discrete conundrum. In R. Lupacchini, & E. G. Tamburrini (Eds.), Grounding Effective Processes in Empirical Laws. Reflections on the Notion of Algorithm, Bulzoni, Roma. Trautteur, G. (1999). Analog computation and the continuum-discrete conundrum. In R. Lupacchini, & E. G. Tamburrini (Eds.), Grounding Effective Processes in Empirical Laws. Reflections on the Notion of Algorithm, Bulzoni, Roma.
go back to reference Turing, A. M. (1936). On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society, 42(2), 230–265. Turing, A. M. (1936). On computable numbers, with an application to the entscheidungs problem. Proceedings of the London Mathematical Society, 42(2), 230–265.
go back to reference van Gelder, T. (1995). What might cognition be if not computation? The Journal of Phylosophy, 92(7), 345–381.CrossRef van Gelder, T. (1995). What might cognition be if not computation? The Journal of Phylosophy, 92(7), 345–381.CrossRef
go back to reference van Gelder, T. (1998). The dynamical hypothesis in cognitive science. The Behavioral and Brain Sciences, 21(5), 615–628. (discussion 629–665). van Gelder, T. (1998). The dynamical hypothesis in cognitive science. The Behavioral and Brain Sciences, 21(5), 615–628. (discussion 629–665).
go back to reference van Gelder, T., & Port, R. (1998). Mind as motion. Exploration in the dynamics of cognition. Cambridge: MIT Press Cambridge. van Gelder, T., & Port, R. (1998). Mind as motion. Exploration in the dynamics of cognition. Cambridge: MIT Press Cambridge.
go back to reference van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science: A Multidisciplinary Journal, 32(6), 939–984.CrossRef van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science: A Multidisciplinary Journal, 32(6), 939–984.CrossRef
go back to reference van Rooij, I., & Wareham, T. (2007). Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. The Computer Journal, 51(3)(November 23), 385–404. van Rooij, I., & Wareham, T. (2007). Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. The Computer Journal, 51(3)(November 23), 385–404.
Metadata
Title
Two Ways into Complexity
Author
Andrea Zeppi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-29483-4_9

Premium Partner