Skip to main content
Top

2019 | OriginalPaper | Chapter

Types of Low Frequency Instabilities in Rotating Detonation Combustors

Authors : Vijay Anand, Ephraim Gutmark

Published in: Active Flow and Combustion Control 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rotating detonation combustors (RDC) offer a significant prospective increase in stagnation pressure across it owing to the presence of one or more rotating detonation waves spinning inside the combustor at the kilohertz regime. Naturally, considerable research impetus has been directed towards this technology in recent years to understand the driving mechanics to harness the associated potential of pressure gain combustion (PGC). One such area of focus has been the off-design operating modes of these devices which cause a myriad of instabilities. The current paper is focused towards the discussion of one such instability regime—low frequency instabilities (LFI)—in RDCs. We review three types of LFIs in RDCs based on prior findings, and propose mechanisms for the same.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Turns, S.: An Introduction to Combustion. McGraw-Hill International, Singapore (2006)MATH Turns, S.: An Introduction to Combustion. McGraw-Hill International, Singapore (2006)MATH
2.
go back to reference Wolański, P.: Detonative propulsion. Proc. Combust. Inst. 34, 125–158 (2013)CrossRef Wolański, P.: Detonative propulsion. Proc. Combust. Inst. 34, 125–158 (2013)CrossRef
3.
go back to reference Yi, T.-H., Lou, J., Turangan, C., Choi, J.-Y., Wolanski, P.: Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power. 27, 171–181 (2011)CrossRef Yi, T.-H., Lou, J., Turangan, C., Choi, J.-Y., Wolanski, P.: Propulsive performance of a continuously rotating detonation engine. J. Propuls. Power. 27, 171–181 (2011)CrossRef
4.
go back to reference Wintenberger, E., Sheperd, J.E.: Thermodynamic cycle analysis for propagating detonations. J. Propuls. Power. 22, 694–697 (2006)CrossRef Wintenberger, E., Sheperd, J.E.: Thermodynamic cycle analysis for propagating detonations. J. Propuls. Power. 22, 694–697 (2006)CrossRef
5.
go back to reference Jones, S., Paxson, D.: Potential benefits to commercial propulsion systems from pressure gain combustion. In: Joint Propulsion Conference, San Jose, CA (2013) Jones, S., Paxson, D.: Potential benefits to commercial propulsion systems from pressure gain combustion. In: Joint Propulsion Conference, San Jose, CA (2013)
6.
go back to reference Frolov, Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of operation process in rotating detonation engine. Prog. Propuls. Phys. 4, 467–488 (2013) Frolov, Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of operation process in rotating detonation engine. Prog. Propuls. Phys. 4, 467–488 (2013)
7.
go back to reference Sousa, J., Paniagua, G., Collado Morata, E.: Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl. Energy. 195, 247–256 (2017)CrossRef Sousa, J., Paniagua, G., Collado Morata, E.: Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor. Appl. Energy. 195, 247–256 (2017)CrossRef
8.
go back to reference Strakey, P., Ferguson, D., Sisler, A., Nix, A.: Computationally quantifying loss mechanisms in a rotating detonation engine. In: 54th AIAA Aerospace Sciences Meeting, pp. 1–14 (2016) Strakey, P., Ferguson, D., Sisler, A., Nix, A.: Computationally quantifying loss mechanisms in a rotating detonation engine. In: 54th AIAA Aerospace Sciences Meeting, pp. 1–14 (2016)
9.
go back to reference Sonwane, C., Clafli, S.: Recent advances in power cycles using rotating detonation engines with subcritical and supercritical CO2. In: The 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania (2014) Sonwane, C., Clafli, S.: Recent advances in power cycles using rotating detonation engines with subcritical and supercritical CO2. In: The 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, Pennsylvania (2014)
10.
go back to reference Harrje, D.T.: Liquid propellant rocket combustion instability, Washington D.C. (1972) Harrje, D.T.: Liquid propellant rocket combustion instability, Washington D.C. (1972)
11.
go back to reference Anand, V., St. George, A., Farbos de Luzan, C., Gutmark, E.: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities. Exp. Therm. Fluid Sci. 92 (2018) Anand, V., St. George, A., Farbos de Luzan, C., Gutmark, E.: Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities. Exp. Therm. Fluid Sci. 92 (2018)
12.
go back to reference Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 77, 212–225 (2016)CrossRef Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 77, 212–225 (2016)CrossRef
13.
go back to reference Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy. 40, 16649–16659 (2015)CrossRef Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Characterization of instabilities in a rotating detonation combustor. Int. J. Hydrogen Energy. 40, 16649–16659 (2015)CrossRef
14.
go back to reference Anand, V., George, A.S., Driscoll, R., Randall, S., Gutmark, E.J.: Statistical treatment of wave instability in rotating detonation combustors. In: 53rd AIAA Aerospace Sciences Meeting (2015) Anand, V., George, A.S., Driscoll, R., Randall, S., Gutmark, E.J.: Statistical treatment of wave instability in rotating detonation combustors. In: 53rd AIAA Aerospace Sciences Meeting (2015)
15.
go back to reference Liu, Y., Wang, Y., Li, Y., Li, Y., Wang, J.: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine. Chinese J. Aeronaut. 28, 669–675 (2015)CrossRef Liu, Y., Wang, Y., Li, Y., Li, Y., Wang, J.: Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine. Chinese J. Aeronaut. 28, 669–675 (2015)CrossRef
16.
go back to reference Li, Y., Wang, Y., Wang, J., Li, Y.: Detonation instability of continuously rotating detonation engines for H 2 -Air mixture 1, 1–7 (2014) Li, Y., Wang, Y., Wang, J., Li, Y.: Detonation instability of continuously rotating detonation engines for H 2 -Air mixture 1, 1–7 (2014)
17.
go back to reference Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen-air continuous detonation combustor. Int. J. Hydrogen Energy. 40, 1616–1623 (2015)CrossRef Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen-air continuous detonation combustor. Int. J. Hydrogen Energy. 40, 1616–1623 (2015)CrossRef
18.
go back to reference Suchocki, J., Yu, S.-T., Hoke, J., Naples, A., Schauer, F., Russo, R.: Rotating detonation engine operation. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, Virigina (2012) Suchocki, J., Yu, S.-T., Hoke, J., Naples, A., Schauer, F., Russo, R.: Rotating detonation engine operation. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, Virigina (2012)
19.
go back to reference Dyer, R., Naples, A., Kaemming, T., Hoke, J., Schauer, F.: Parametric testing of a unique rotating detonation engine design. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee (2012) Dyer, R., Naples, A., Kaemming, T., Hoke, J., Schauer, F.: Parametric testing of a unique rotating detonation engine design. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee (2012)
20.
go back to reference Shank, J.C., King, P.I., Karnesky, J., Schauer, F.R., Hoke, J.L.: Development and testing of a modular rotating detonation engine. In: 50th AIAA Aerospace Sciences Meeting, Nashville, TN (2012) Shank, J.C., King, P.I., Karnesky, J., Schauer, F.R., Hoke, J.L.: Development and testing of a modular rotating detonation engine. In: 50th AIAA Aerospace Sciences Meeting, Nashville, TN (2012)
21.
go back to reference Kindracki, J.: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol. 43, 445–453 (2015)CrossRef Kindracki, J.: Experimental research on rotating detonation in liquid fuel-gaseous air mixtures. Aerosp. Sci. Technol. 43, 445–453 (2015)CrossRef
22.
go back to reference Anand, V., George, A., Driscoll, R., Gutmark, E.: Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor. Exp. Therm. Fluid Sci. 70, 408–416 (2016)CrossRef Anand, V., George, A., Driscoll, R., Gutmark, E.: Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor. Exp. Therm. Fluid Sci. 70, 408–416 (2016)CrossRef
23.
go back to reference Yang, C., Wu, X., Ma, H., Peng, L., Gao, J.: Experimental research on initiation characteristics of a rotating detonation engine. Exp. Therm. Fluid Sci. 71, 154–163 (2016)CrossRef Yang, C., Wu, X., Ma, H., Peng, L., Gao, J.: Experimental research on initiation characteristics of a rotating detonation engine. Exp. Therm. Fluid Sci. 71, 154–163 (2016)CrossRef
24.
go back to reference Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z.: Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen. Int. J. Hydrogen Energy. 40, 9530–9538 (2015)CrossRef Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z.: Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen. Int. J. Hydrogen Energy. 40, 9530–9538 (2015)CrossRef
25.
go back to reference Lin, W., Zhou, J., Liu, S., Lin, Z., Zhuang, F.: Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy. 40, 1980–1993 (2015)CrossRef Lin, W., Zhou, J., Liu, S., Lin, Z., Zhuang, F.: Experimental study on propagation mode of H2/Air continuously rotating detonation wave. Int. J. Hydrogen Energy. 40, 1980–1993 (2015)CrossRef
26.
go back to reference Kindracki, J., Kobiera, A., Wolański, P., Gut, Z., Folusiak, M., Swiderski, K.: Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures. Prog. Propuls. Phys. 2, 555–582 (2012) Kindracki, J., Kobiera, A., Wolański, P., Gut, Z., Folusiak, M., Swiderski, K.: Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures. Prog. Propuls. Phys. 2, 555–582 (2012)
27.
go back to reference Peng, L., Wang, D., Wu, X., Ma, H., Yang, C.: Ignition experiment with automotive spark on rotating detonation engine. Int. J. Hydrogen Energy. 40, 8465–8474 (2015)CrossRef Peng, L., Wang, D., Wu, X., Ma, H., Yang, C.: Ignition experiment with automotive spark on rotating detonation engine. Int. J. Hydrogen Energy. 40, 8465–8474 (2015)CrossRef
28.
go back to reference Clayton, R., Rogero, R., Sotter, J.: An experimental description of destructive liquid rocket resonant combustion. AIAA J. 6, 1252–1259 (1968)CrossRef Clayton, R., Rogero, R., Sotter, J.: An experimental description of destructive liquid rocket resonant combustion. AIAA J. 6, 1252–1259 (1968)CrossRef
29.
go back to reference Narayanaswamy, V., Raja, L.L., Clemens, N.T.: Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids. 24 (2012) Narayanaswamy, V., Raja, L.L., Clemens, N.T.: Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids. 24 (2012)
30.
go back to reference Boshoff-Mostert, L., Viljoen, H.J.: Analysis of combustion-driven acoustics. Chem. Eng. Sci. 53, 1679–1687 (1998)CrossRef Boshoff-Mostert, L., Viljoen, H.J.: Analysis of combustion-driven acoustics. Chem. Eng. Sci. 53, 1679–1687 (1998)CrossRef
31.
go back to reference Anand, V., St. George, A.: Amplitude modulated instability in reactants plenum of a rotating detonation combustor. Int. J. Hydrogen Energy. 42, 12629–12644 (2017)CrossRef Anand, V., St. George, A.: Amplitude modulated instability in reactants plenum of a rotating detonation combustor. Int. J. Hydrogen Energy. 42, 12629–12644 (2017)CrossRef
32.
go back to reference St. George, A.C., Driscoll, R.B., Anand, V., Munday, D.E., Gutmark, E.J.: Development of a rotating detonation engine facility at the university of cincinnati. In: 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virginia (2015) St. George, A.C., Driscoll, R.B., Anand, V., Munday, D.E., Gutmark, E.J.: Development of a rotating detonation engine facility at the university of cincinnati. In: 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virginia (2015)
33.
go back to reference Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Investigation of rotating detonation combustor operation with H 2 -Air mixtures. Int. J. Hydrogen Energy. 41, 1281–1292 (2016)CrossRef Anand, V., St. George, A., Driscoll, R., Gutmark, E.: Investigation of rotating detonation combustor operation with H 2 -Air mixtures. Int. J. Hydrogen Energy. 41, 1281–1292 (2016)CrossRef
34.
go back to reference St. George, A., Randall, S., Anand, V., Driscoll, R., Gutmark, E.: Characterization of initiator dynamics in a rotating detonation combustor. Exp. Therm. Fluid Sci. 72, 171–181 (2016) St. George, A., Randall, S., Anand, V., Driscoll, R., Gutmark, E.: Characterization of initiator dynamics in a rotating detonation combustor. Exp. Therm. Fluid Sci. 72, 171–181 (2016)
35.
go back to reference Stevens, C.A., Fotia, M.L., Hoke, J.L., Schauer, F.R.: Comparison of transient response of pressure measurement techniques with application to detonation waves. AIAA Aerosp. Sci. Meet. 5, 1102–2015 (2015) Stevens, C.A., Fotia, M.L., Hoke, J.L., Schauer, F.R.: Comparison of transient response of pressure measurement techniques with application to detonation waves. AIAA Aerosp. Sci. Meet. 5, 1102–2015 (2015)
36.
go back to reference Hulka, J.R., Jones, G.W.: Performance and stability analyses of rocket thrust. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Nashville, TN (2010) Hulka, J.R., Jones, G.W.: Performance and stability analyses of rocket thrust. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Nashville, TN (2010)
37.
go back to reference Alster, M.: Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vib. 24, 63–85 (1972)CrossRef Alster, M.: Improved calculation of resonant frequencies of Helmholtz resonators. J. Sound Vib. 24, 63–85 (1972)CrossRef
38.
go back to reference Mariappan, S., Sujith, R.I.: Thermoacoustic instability in a solid rocket motor: non-normality and nonlinear instabilities. J. Fluid Mech. 653, 1–33 (2010)CrossRef Mariappan, S., Sujith, R.I.: Thermoacoustic instability in a solid rocket motor: non-normality and nonlinear instabilities. J. Fluid Mech. 653, 1–33 (2010)CrossRef
39.
go back to reference Fotia, M.L., Hoke, J.L., Scientific, I.: Propellant plenum dynamics in a two-dimensional rotating detonation experiment. In: 52nd Aerospace Sciences Meeting, pp. 1–10 (2014) Fotia, M.L., Hoke, J.L., Scientific, I.: Propellant plenum dynamics in a two-dimensional rotating detonation experiment. In: 52nd Aerospace Sciences Meeting, pp. 1–10 (2014)
40.
go back to reference Schwer, D., Kailasanath, K.: Feedback into mixture plenums in rotating detonation engines. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN (2012) Schwer, D., Kailasanath, K.: Feedback into mixture plenums in rotating detonation engines. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN (2012)
41.
go back to reference Gruber, S., Skews, B.: Weak shock wave reflection from concave surfaces. Exp. Fluids. 54, 1571 (2013)CrossRef Gruber, S., Skews, B.: Weak shock wave reflection from concave surfaces. Exp. Fluids. 54, 1571 (2013)CrossRef
42.
go back to reference Bedick, C., Sisler, A., Ferguson, D., Strakey, P., Nix, A., Billips, D.: Development of a lab–scale experimental testing platform for rotating detonation engine inlets. In: 55th AIAA Aerospace Sciences Meeting, Grapevine, TX (2017) Bedick, C., Sisler, A., Ferguson, D., Strakey, P., Nix, A., Billips, D.: Development of a lab–scale experimental testing platform for rotating detonation engine inlets. In: 55th AIAA Aerospace Sciences Meeting, Grapevine, TX (2017)
43.
go back to reference Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34, 499–550 (2008)CrossRef Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34, 499–550 (2008)CrossRef
44.
go back to reference Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., Funaki, I.: Stable detonation wave propagation in rectangular-cross-section curved channels. Combust. Flame. 159, 859–869 (2012)CrossRef Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., Funaki, I.: Stable detonation wave propagation in rectangular-cross-section curved channels. Combust. Flame. 159, 859–869 (2012)CrossRef
45.
go back to reference Pan, Z., Fan, B., Zhang, X., Gui, M., Dong, G.: Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame. 158, 2220–2228 (2011)CrossRef Pan, Z., Fan, B., Zhang, X., Gui, M., Dong, G.: Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame. 158, 2220–2228 (2011)CrossRef
46.
go back to reference Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press (2008) Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press (2008)
Metadata
Title
Types of Low Frequency Instabilities in Rotating Detonation Combustors
Authors
Vijay Anand
Ephraim Gutmark
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-98177-2_13

Premium Partners