Skip to main content
Top

2022 | OriginalPaper | Chapter

7. Typical Plasma Sprayed Coatings and Applications

Authors : Guozheng Ma, Shuying Chen, Haidou Wang

Published in: Micro Process and Quality Control of Plasma Spraying

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the excellent coating quality, wide adaptability, convenient process flow, and low manufacturing cost, plasma spraying technology is widely used in strengthening the basic properties of part surfaces, such as wear resistance, corrosion resistance, and high-temperature resistance. This technology also has a broad range of applications that includes super hydrophobicity, stealth absorption, and electric conduction and insulation empowerment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Picoli S, Mendes RS, Malacarne LC (2003) Q-exponential, Weibull, and q-Weibull distributions: an empirical analysis. Physica A 324:678–688CrossRef Picoli S, Mendes RS, Malacarne LC (2003) Q-exponential, Weibull, and q-Weibull distributions: an empirical analysis. Physica A 324:678–688CrossRef
2.
go back to reference Liu H, Xiong X, Li X et al (2014) Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros Sci 85:87–93CrossRef Liu H, Xiong X, Li X et al (2014) Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros Sci 85:87–93CrossRef
3.
go back to reference Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15(8):804–809CrossRef Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15(8):804–809CrossRef
4.
go back to reference Zhao X, Wang X, Xiao P (2006) Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment. Surf Coat Technol 200(20–21):5946–5955CrossRef Zhao X, Wang X, Xiao P (2006) Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment. Surf Coat Technol 200(20–21):5946–5955CrossRef
5.
go back to reference Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891–899CrossRef Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891–899CrossRef
6.
go back to reference Fan W, Wang ZZ, Bai Y et al (2018) Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. J Eur Ceram Soc 38(13):4502–4511CrossRef Fan W, Wang ZZ, Bai Y et al (2018) Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. J Eur Ceram Soc 38(13):4502–4511CrossRef
7.
go back to reference Vassen R, Cao X, Tietz F et al (2004) Zirconates as new material for thermal barrier coatings. J Am Ceram Soc 83(8):2023–2028CrossRef Vassen R, Cao X, Tietz F et al (2004) Zirconates as new material for thermal barrier coatings. J Am Ceram Soc 83(8):2023–2028CrossRef
8.
go back to reference Wan C, Zhang W, Wang Y et al (2010) Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore. Acta Mater 58(18):6166–6172CrossRef Wan C, Zhang W, Wang Y et al (2010) Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore. Acta Mater 58(18):6166–6172CrossRef
9.
go back to reference Yamanaka S, Kurosaki K, Oyama T et al (2010) Thermophysical properties of perovskite-type strontium cerate and zirconate. J Am Ceram Soc 88:1496–1499CrossRef Yamanaka S, Kurosaki K, Oyama T et al (2010) Thermophysical properties of perovskite-type strontium cerate and zirconate. J Am Ceram Soc 88:1496–1499CrossRef
10.
go back to reference Chen C, Zhao Y, Fan X et al (2011) Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems. Surf Coatings Technol 205(10):3293–3300 Chen C, Zhao Y, Fan X et al (2011) Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems. Surf Coatings Technol 205(10):3293–3300
11.
go back to reference Limarga AM, Shian S, Leckie RM et al (2014) Thermal conductivity of single- and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system. J Eur Ceram Soc 34(12):3085–3094CrossRef Limarga AM, Shian S, Leckie RM et al (2014) Thermal conductivity of single- and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system. J Eur Ceram Soc 34(12):3085–3094CrossRef
12.
go back to reference Pitek FM, Levi CG (2007) Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system. Surf Coatings Technol 201(12):6044–6050 Pitek FM, Levi CG (2007) Opportunities for TBCs in the ZrO2-YO1.5-TaO2.5 system. Surf Coatings Technol 201(12):6044–6050
13.
go back to reference Chen L, Song P, Feng J (2018) Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Mater 152:117–121CrossRef Chen L, Song P, Feng J (2018) Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Mater 152:117–121CrossRef
14.
go back to reference Chen L, Mingyu H, Peng W et al (2019) Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 102(8):4809–4821CrossRef Chen L, Mingyu H, Peng W et al (2019) Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 102(8):4809–4821CrossRef
15.
go back to reference Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceramic Soc 24(1):1–10 Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceramic Soc 24(1):1–10
16.
go back to reference Wan CL, Pan W, Xu Q et al (2006) Effect of point defects on the thermal transport properties of (LaxGd1-x)2 Zr2O7: experiment and theoretical model. Phys Rev B 74(14):144109CrossRef Wan CL, Pan W, Xu Q et al (2006) Effect of point defects on the thermal transport properties of (LaxGd1-x)2 Zr2O7: experiment and theoretical model. Phys Rev B 74(14):144109CrossRef
17.
go back to reference Wan C, Zhixue Q, Aibing D et al (2009) Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7. Acta Mater 57(16):4782–4789CrossRef Wan C, Zhixue Q, Aibing D et al (2009) Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7. Acta Mater 57(16):4782–4789CrossRef
18.
go back to reference Tian Z, Lin C, Zheng L et al (2018) Defect-mediated multiple-enhancement of phonon scattering and decrement of thermal conductivity in (YxYb1-x)(2)SiO5 solid solution. Acta Mater 144:292–304CrossRef Tian Z, Lin C, Zheng L et al (2018) Defect-mediated multiple-enhancement of phonon scattering and decrement of thermal conductivity in (YxYb1-x)(2)SiO5 solid solution. Acta Mater 144:292–304CrossRef
19.
go back to reference Yang J, Zhao M, Zhang L et al (2018) Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping. Scripta Mater 153:1–5CrossRef Yang J, Zhao M, Zhang L et al (2018) Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping. Scripta Mater 153:1–5CrossRef
20.
go back to reference Xie X, Guo H, Gong S et al (2011) Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300 °C. J Eur Ceram Soc 31(9):1677–1683CrossRef Xie X, Guo H, Gong S et al (2011) Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300 °C. J Eur Ceram Soc 31(9):1677–1683CrossRef
21.
go back to reference Vaßen R, Jarligo MO, Steinke T et al (2010) Overview on advanced thermal barrier coatings. Surf Coatings Technol 205(4):938–942 Vaßen R, Jarligo MO, Steinke T et al (2010) Overview on advanced thermal barrier coatings. Surf Coatings Technol 205(4):938–942
22.
go back to reference Wang J, Chong X, Zhou R et al (2017) Microstructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Mater 126:24–28CrossRef Wang J, Chong X, Zhou R et al (2017) Microstructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Mater 126:24–28CrossRef
23.
go back to reference Tian Z, Zheng L, Wang J et al (2016) Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc 36(1):189–202CrossRef Tian Z, Zheng L, Wang J et al (2016) Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc 36(1):189–202CrossRef
24.
go back to reference Zhang XC, Xu BS, Tu ST et al (2008) Effect of spraying power on the microstructure and mechanical properties of supersonic plasma-sprayed Ni-based alloy coatings. Appl Surf Sci 254(20):6318–6326CrossRef Zhang XC, Xu BS, Tu ST et al (2008) Effect of spraying power on the microstructure and mechanical properties of supersonic plasma-sprayed Ni-based alloy coatings. Appl Surf Sci 254(20):6318–6326CrossRef
25.
go back to reference Bai Y, Zhao L, Qu YM et al (2015) Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloy Compd 644:873–882CrossRef Bai Y, Zhao L, Qu YM et al (2015) Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings. J Alloy Compd 644:873–882CrossRef
26.
go back to reference Fauchais P, Rat V, Etchartsalas R et al (2008) Operating parameters for suspension and solution plasma-spray coatings. Surf Coat Technol 202(18):4309–4317CrossRef Fauchais P, Rat V, Etchartsalas R et al (2008) Operating parameters for suspension and solution plasma-spray coatings. Surf Coat Technol 202(18):4309–4317CrossRef
27.
go back to reference Zou Z, Donoghue J, Curry N et al (2015) A comparative study on the performance of suspension plasma sprayed thermal barrier coatings with different bond coat systems. Surf Coatings Technol 275:276–282 Zou Z, Donoghue J, Curry N et al (2015) A comparative study on the performance of suspension plasma sprayed thermal barrier coatings with different bond coat systems. Surf Coatings Technol 275:276–282
28.
go back to reference Lima RS, Marple BR (2008) Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater Sci Eng, A 485(1–2):182–193CrossRef Lima RS, Marple BR (2008) Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater Sci Eng, A 485(1–2):182–193CrossRef
29.
go back to reference Cheng B, Yang N, Zhang Q et al (2017) Sintering induced the failure behavior of dense vertically crack and lamellar structured TBCs with equivalent thermal insulation performance. Ceram Int 43(17):15459–15465CrossRef Cheng B, Yang N, Zhang Q et al (2017) Sintering induced the failure behavior of dense vertically crack and lamellar structured TBCs with equivalent thermal insulation performance. Ceram Int 43(17):15459–15465CrossRef
30.
go back to reference Chen WR, Wu X, Marple BR et al (2006) The growth and influence of thermally grown oxide in a thermal barrier coating. Surf Coatings Technol 201(3–4):1074–1079 Chen WR, Wu X, Marple BR et al (2006) The growth and influence of thermally grown oxide in a thermal barrier coating. Surf Coatings Technol 201(3–4):1074–1079
31.
go back to reference Wu F, Jordan EH, Ma X et al (2008) Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings. Surf Coatings Technol 202(9):1628–1635 Wu F, Jordan EH, Ma X et al (2008) Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings. Surf Coatings Technol 202(9):1628–1635
32.
go back to reference Fluegel A (2007) Glass viscosity calculation based on a global statistical modelling approach. Glass Technol Eur J Glass Sci Technol Part A 48:13–30 Fluegel A (2007) Glass viscosity calculation based on a global statistical modelling approach. Glass Technol Eur J Glass Sci Technol Part A 48:13–30
33.
go back to reference Craig M, Ndamka NL, Wellman RG et al (2015) CMAS degradation of EB-PVD TBCs: the effect of basicity. Surf Coat Technol 270:145–153CrossRef Craig M, Ndamka NL, Wellman RG et al (2015) CMAS degradation of EB-PVD TBCs: the effect of basicity. Surf Coat Technol 270:145–153CrossRef
34.
go back to reference Bolelli G, Lusvarghi L, Manfredini T et al (2007) BAS, CMAS and CZAS glass coatings deposited by plasma spraying. J Eur Ceram Soc 27(16):4575–4588CrossRef Bolelli G, Lusvarghi L, Manfredini T et al (2007) BAS, CMAS and CZAS glass coatings deposited by plasma spraying. J Eur Ceram Soc 27(16):4575–4588CrossRef
35.
go back to reference Li G, Cai C, Wang Y et al (2019) Zirconium silicate growth induced by the thermochemical interaction of yttria-stablized zirconia coatings with molten CMAS deposits. Corros Sci 149:249–256CrossRef Li G, Cai C, Wang Y et al (2019) Zirconium silicate growth induced by the thermochemical interaction of yttria-stablized zirconia coatings with molten CMAS deposits. Corros Sci 149:249–256CrossRef
36.
go back to reference Kang YX, Bai Y, Fan W et al (2018) Thermal cycling performance of La2Ce2O7/50 vol. % YSZ composite thermal barrier coating with CMAS corrosion. J Eur Ceramic Soc 38(7):2851–2862 Kang YX, Bai Y, Fan W et al (2018) Thermal cycling performance of La2Ce2O7/50 vol. % YSZ composite thermal barrier coating with CMAS corrosion. J Eur Ceramic Soc 38(7):2851–2862
37.
go back to reference Wu RT, Osawa M, Yokokawa T et al (2010) Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid Mech Mater Eng 4(2):119–130CrossRef Wu RT, Osawa M, Yokokawa T et al (2010) Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid Mech Mater Eng 4(2):119–130CrossRef
38.
go back to reference Chen X (2006) Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surf Coat Technol 200(11):3418–3427CrossRef Chen X (2006) Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surf Coat Technol 200(11):3418–3427CrossRef
39.
go back to reference Gao L, Guo H, Gong S et al (2014) Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration. J Eur Ceram Soc 34(10):2553–2561CrossRef Gao L, Guo H, Gong S et al (2014) Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration. J Eur Ceram Soc 34(10):2553–2561CrossRef
40.
go back to reference Perrudin F, MH Vidal-Sétif, Rio C et al (2019) Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts. J Eur Ceramic Soc 39(14):4223–4232 Perrudin F, MH Vidal-Sétif, Rio C et al (2019) Influence of rare earth oxides on kinetics and reaction mechanisms in CMAS silicate melts. J Eur Ceramic Soc 39(14):4223–4232
41.
go back to reference Su JB (2016) Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosopy. Northwestern Polytechnical University Su JB (2016) Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosopy. Northwestern Polytechnical University
42.
go back to reference Wen Q, Zhou W, Jinbu S et al (2016) Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings. J Mater Sci: Mater Electron 27(2):1783–1790 Wen Q, Zhou W, Jinbu S et al (2016) Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings. J Mater Sci: Mater Electron 27(2):1783–1790
43.
go back to reference Yang C (2018) Design and performance of periodic structure absorbing material based ceramic coating. Northwestern Polytechnical University Yang C (2018) Design and performance of periodic structure absorbing material based ceramic coating. Northwestern Polytechnical University
44.
go back to reference Chen W, Gao Y, Zhu L et al (2013) Experimental study on ZrO2 coating applied to partiality of tank for heat insulation. Hot Working Technol 16:140–143 Chen W, Gao Y, Zhu L et al (2013) Experimental study on ZrO2 coating applied to partiality of tank for heat insulation. Hot Working Technol 16:140–143
45.
go back to reference Wang D (2014) Research on the YSZ system low infrared emissivity coatings in 3–5 um wavelengths with high temperature resistant and thermal shock resistance. Nanjing University of Aeronautics and Astronautics Wang D (2014) Research on the YSZ system low infrared emissivity coatings in 3–5 um wavelengths with high temperature resistant and thermal shock resistance. Nanjing University of Aeronautics and Astronautics
46.
go back to reference Li Y, Li S, Ke C et al (2018) Preparation and infrared emissivity of Ni2Cr(BO3)O2 coating [J]. China Surf Eng 31(03):143–148 Li Y, Li S, Ke C et al (2018) Preparation and infrared emissivity of Ni2Cr(BO3)O2 coating [J]. China Surf Eng 31(03):143–148
47.
go back to reference Ha SW, Eckert KL, Wintermantel E, Gruner H, Vonmont H (1998) NaOH treatment of vacuum-plasma-sprayed titanium on carbon fibre-reinforced poly(etheretherketone). J Mater Sci Mater Med 8:881–886CrossRef Ha SW, Eckert KL, Wintermantel E, Gruner H, Vonmont H (1998) NaOH treatment of vacuum-plasma-sprayed titanium on carbon fibre-reinforced poly(etheretherketone). J Mater Sci Mater Med 8:881–886CrossRef
48.
go back to reference Zheng X, Chen Y, Liang Y et al (2009) Study on plasma sprayed new bioactive coatings. Thermal Spray Technol 1(1):59–62 Zheng X, Chen Y, Liang Y et al (2009) Study on plasma sprayed new bioactive coatings. Thermal Spray Technol 1(1):59–62
49.
go back to reference Bencharit S, Byrd WC, Altarawneh S et al (2015) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826CrossRef Bencharit S, Byrd WC, Altarawneh S et al (2015) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826CrossRef
50.
go back to reference Cai HZ (2017) Experimental study on the effect of tantalum coating on the surface of titanium based artificial implant on its biological properties. The General Hospital of the People’s Liberation Army Cai HZ (2017) Experimental study on the effect of tantalum coating on the surface of titanium based artificial implant on its biological properties. The General Hospital of the People’s Liberation Army
51.
go back to reference Jantová S, Theiszová M, Letaiová S et al (2008) In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity. Mutat Res 652(2):139–144 Jantová S, Theiszová M, Letaiová S et al (2008) In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity. Mutat Res 652(2):139–144
52.
go back to reference Oliveira AL, Reis RL, Li P (2010) Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J Biomed Mater Res B Appl Biomater 83B(1):258–265CrossRef Oliveira AL, Reis RL, Li P (2010) Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J Biomed Mater Res B Appl Biomater 83B(1):258–265CrossRef
53.
go back to reference Gomes S, Renaudin G, Mesbah A et al (2010) Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomaterialia 6(8):3264–3274 Gomes S, Renaudin G, Mesbah A et al (2010) Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomaterialia 6(8):3264–3274
54.
go back to reference Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coatings Technol 205(8–9):2785–2792 Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coatings Technol 205(8–9):2785–2792
55.
go back to reference Liu X, Ding C (2002) Characterization of plasma sprayed wollastonite powder and coatings. Surf Coat Technol 153(2–3):173–177CrossRef Liu X, Ding C (2002) Characterization of plasma sprayed wollastonite powder and coatings. Surf Coat Technol 153(2–3):173–177CrossRef
56.
go back to reference Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968CrossRef Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968CrossRef
57.
go back to reference Xue W, Liu X, Zheng X et al (2005) In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials 26(16):3029–3037CrossRef Xue W, Liu X, Zheng X et al (2005) In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials 26(16):3029–3037CrossRef
58.
go back to reference Xie Y, Liu X, Zheng X (2005) Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6Al-4V alloy. Surf Coat Technol 199(199):105–111CrossRef Xie Y, Liu X, Zheng X (2005) Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6Al-4V alloy. Surf Coat Technol 199(199):105–111CrossRef
59.
go back to reference Xie YT, Zheng XB, Huang LP et al (2013) In vitro cytocompatibility of plasma-sprayed dicalcium silicate/zirconia composite coatings. Ceram Int 39(4):4707–4711CrossRef Xie YT, Zheng XB, Huang LP et al (2013) In vitro cytocompatibility of plasma-sprayed dicalcium silicate/zirconia composite coatings. Ceram Int 39(4):4707–4711CrossRef
60.
go back to reference Li K, Xie Y, Ao H et al (2013) The enhanced bactericidal effect of plasma sprayed zinc-modified calcium silicate coating by the addition of silver. Ceram Int 39(7):7895–7902CrossRef Li K, Xie Y, Ao H et al (2013) The enhanced bactericidal effect of plasma sprayed zinc-modified calcium silicate coating by the addition of silver. Ceram Int 39(7):7895–7902CrossRef
61.
go back to reference Chen X, Yuan J, Huang J et al (2014) Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications. Appl Surf Sci 311:864–869CrossRef Chen X, Yuan J, Huang J et al (2014) Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications. Appl Surf Sci 311:864–869CrossRef
62.
go back to reference Zhang C, Wu Y, Liu L (2012) Robust hydrophobic Fe-based amorphous coating by thermal spraying. Appl Phys Lett 101(12):44–51 Zhang C, Wu Y, Liu L (2012) Robust hydrophobic Fe-based amorphous coating by thermal spraying. Appl Phys Lett 101(12):44–51
63.
go back to reference Li Z, Zheng Y, Cui L (2012) Preparation of metallic coatings with reversibly switchable wettability based on plasma spraying technology. J Coat Technol Res 9(5):579–587CrossRef Li Z, Zheng Y, Cui L (2012) Preparation of metallic coatings with reversibly switchable wettability based on plasma spraying technology. J Coat Technol Res 9(5):579–587CrossRef
64.
go back to reference Chen X, Gong Y, Suo X et al (2015) Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification. Appl Surf Sci 356(30):639–644CrossRef Chen X, Gong Y, Suo X et al (2015) Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification. Appl Surf Sci 356(30):639–644CrossRef
65.
go back to reference Chen X, Gong Y, Li D et al (2016) Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route. Colloids Surf, A 492:19–25CrossRef Chen X, Gong Y, Li D et al (2016) Robust and easy-repairable superhydrophobic surfaces with multiple length-scale topography constructed by thermal spray route. Colloids Surf, A 492:19–25CrossRef
66.
go back to reference Sharifi N, Pugh M, Moreau C et al (2016) Developing hydrophobic and superhydrophobic TiO2 coatings by plasma spraying. Surf Coatings Technol 29–36 Sharifi N, Pugh M, Moreau C et al (2016) Developing hydrophobic and superhydrophobic TiO2 coatings by plasma spraying. Surf Coatings Technol 29–36
Metadata
Title
Typical Plasma Sprayed Coatings and Applications
Authors
Guozheng Ma
Shuying Chen
Haidou Wang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2742-3_7

Premium Partners