Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Unconditionally Stable Fundamental Alternating Direction Implicit FDTD Method for Dispersive Media

Authors : Ding Yu Heh, Eng Leong Tan

Published in: Computational Electromagnetics—Retrospective and Outlook

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the formulation of novel unconditionally stable fundamental alternating direction implicit finite-difference time-domain (FADI-FDTD) method for dispersive media. A generalized formulation is provided, which is applicable for various dispersive models, such as Debye, Lorentz, Drude, and complex conjugate pole-residue pair models. The extension for full 3D dispersive media using novel FADI-FDTD method makes the resultant update equations much more concise and simpler than using conventional ADI-FDTD method. To demonstrate the application of novel FADI-FDTD method, the analysis of plasmonic waveguide using FADI-FDTD method is provided. The characteristics of a surface plasmon waveguides with Au (gold) and Ag (silver) metal cladding, modeled as combination of Drude-Lorentz dispersive media are analyzed. Further analysis of plasmonic waveguide grating filter is also considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag. 14(4), 302–307 (1966)MATHMathSciNet K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag. 14(4), 302–307 (1966)MATHMathSciNet
2.
go back to reference A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005) A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005)
3.
go back to reference W.J.R. Hoefer, The transmission-line matrix method–theory and applications. IEEE Trans. Microw. Theory Tech. 33(10), 882–893 (1985)CrossRef W.J.R. Hoefer, The transmission-line matrix method–theory and applications. IEEE Trans. Microw. Theory Tech. 33(10), 882–893 (1985)CrossRef
4.
go back to reference W.J.R. Hoefer, The transmission-line matrix (TLM) method, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, ed. by T. Itoh (Wiley, New York, 1989) W.J.R. Hoefer, The transmission-line matrix (TLM) method, in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, ed. by T. Itoh (Wiley, New York, 1989)
5.
go back to reference C. Christopoulos, The Transmission-Line Modeling Method : TLM in IEEE/OUP on Electromagnetic Wave Theory Piscataway (IEEE Press, Piscataway, 1995)CrossRef C. Christopoulos, The Transmission-Line Modeling Method : TLM in IEEE/OUP on Electromagnetic Wave Theory Piscataway (IEEE Press, Piscataway, 1995)CrossRef
6.
go back to reference F. Zheng, Z. Chen, J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 48(9), 1550–1558 (2000)CrossRef F. Zheng, Z. Chen, J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 48(9), 1550–1558 (2000)CrossRef
7.
go back to reference T. Namiki, 3-D ADI-FDTD method: unconditionally stable time-domain algorithm for solving full vector maxwell’s equations. IEEE Trans. Microw. Theory Tech. 48(10), 1743–1748 (2000)CrossRef T. Namiki, 3-D ADI-FDTD method: unconditionally stable time-domain algorithm for solving full vector maxwell’s equations. IEEE Trans. Microw. Theory Tech. 48(10), 1743–1748 (2000)CrossRef
8.
go back to reference Y.-M. Lee, C.-P. Chen, Power grid transient simulation in linear time based on transmission-line-modeling alternating-direction-implicit method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(11), 1343–1352 (2002)CrossRefMathSciNet Y.-M. Lee, C.-P. Chen, Power grid transient simulation in linear time based on transmission-line-modeling alternating-direction-implicit method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(11), 1343–1352 (2002)CrossRefMathSciNet
9.
go back to reference S.L Maguer, A. Peden, D. Bourreau, M.M. Ney, Split-step TLM (SS TLM)—a new scheme for accelerating electromagnetic-field simulation. IEEE Trans. Microw. Theory Tech. 52(4), 1182–1190 (2004) S.L Maguer, A. Peden, D. Bourreau, M.M. Ney, Split-step TLM (SS TLM)—a new scheme for accelerating electromagnetic-field simulation. IEEE Trans. Microw. Theory Tech. 52(4), 1182–1190 (2004)
10.
go back to reference S.G. Garcia, R.G. Rubio, A.R. Bretones, R.G. Martin, Extension of the ADI-FDTD method to debye media. IEEE Trans. Antennas Propag. 51(11), 3183–3186 (2003)CrossRef S.G. Garcia, R.G. Rubio, A.R. Bretones, R.G. Martin, Extension of the ADI-FDTD method to debye media. IEEE Trans. Antennas Propag. 51(11), 3183–3186 (2003)CrossRef
11.
go back to reference X.T. Dong, N.V. Venkatarayalu, B. Guo, W.Y. Yin, Y.B. Gan, General formulation of unconditionally stable ADI-FDTD method in linear dispersive media. IEEE Trans. Microw. Theory Tech. 52(1), 170–174 (2004)CrossRef X.T. Dong, N.V. Venkatarayalu, B. Guo, W.Y. Yin, Y.B. Gan, General formulation of unconditionally stable ADI-FDTD method in linear dispersive media. IEEE Trans. Microw. Theory Tech. 52(1), 170–174 (2004)CrossRef
12.
go back to reference L. Xu, N. Yuan, PLJERC-ADI-FDTD method for isotropic plasma. IEEE Microwave Wirel. Compon. Lett. 15(4), 277–279 (2005)CrossRef L. Xu, N. Yuan, PLJERC-ADI-FDTD method for isotropic plasma. IEEE Microwave Wirel. Compon. Lett. 15(4), 277–279 (2005)CrossRef
13.
go back to reference K.-Y. Jung, F.L. Teixeira, Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures. IEEE Photonics Technol. Lett. 19(8), 586–588 (2007)CrossRef K.-Y. Jung, F.L. Teixeira, Multispecies ADI-FDTD algorithm for nanoscale three-dimensional photonic metallic structures. IEEE Photonics Technol. Lett. 19(8), 586–588 (2007)CrossRef
14.
go back to reference J.A. Pereda, O. Gonzalez, A. Grande, A. Vegas, An alternating-direction implicit FDTD modeling of dispersive media without constitutive relation splitting. IEEE Microwave Wirel. Compon. Lett. 18(11), 719–721 (2008)CrossRef J.A. Pereda, O. Gonzalez, A. Grande, A. Vegas, An alternating-direction implicit FDTD modeling of dispersive media without constitutive relation splitting. IEEE Microwave Wirel. Compon. Lett. 18(11), 719–721 (2008)CrossRef
15.
go back to reference O. Ramadan, General ADI-FDTD formulations for multi-term dispersive electromagnetic applications. IEEE Microwave Wirel. Compon. Lett. 21(10), 513–515 (2011)CrossRef O. Ramadan, General ADI-FDTD formulations for multi-term dispersive electromagnetic applications. IEEE Microwave Wirel. Compon. Lett. 21(10), 513–515 (2011)CrossRef
16.
go back to reference E.L. Tan, Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(1), 7–9 (2007)CrossRef E.L. Tan, Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(1), 7–9 (2007)CrossRef
17.
go back to reference E.L. Tan, Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56(1), 170–177 (2008)CrossRef E.L. Tan, Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56(1), 170–177 (2008)CrossRef
18.
go back to reference E.L. Tan, Concise current source implementation for efficient 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(11), 748–750 (2007)CrossRef E.L. Tan, Concise current source implementation for efficient 3-D ADI-FDTD method. IEEE Microwave Wirel. Compon. Lett. 17(11), 748–750 (2007)CrossRef
19.
go back to reference K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8), 1158–1160 (2003)CrossRef K. Tanaka, M. Tanaka, Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82(8), 1158–1160 (2003)CrossRef
20.
go back to reference S.A. Maier, P.G. Kik, H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B. 67, 205402 (2003) S.A. Maier, P.G. Kik, H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B. 67, 205402 (2003)
21.
go back to reference S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005) S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)
22.
go back to reference A. Vial, A.-S. Grimault, D. Marcias, D. Barchiesi, M.L. de La Chapelle, Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416(1)–085416(7) (2005)CrossRef A. Vial, A.-S. Grimault, D. Marcias, D. Barchiesi, M.L. de La Chapelle, Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416(1)–085416(7) (2005)CrossRef
23.
go back to reference P.B. Johnson, R.W. Christy, Optical contants of the noble metal. Phys. Rev. B 6, 4370–4379 (1972)CrossRef P.B. Johnson, R.W. Christy, Optical contants of the noble metal. Phys. Rev. B 6, 4370–4379 (1972)CrossRef
24.
go back to reference A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)CrossRef A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)CrossRef
25.
go back to reference D.W. Lynch, W.R. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, Orlando, 1985), pp. 350–357 D.W. Lynch, W.R. Hunter, Comments on the optical constants of metals and an introduction to the data for several metals, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, Orlando, 1985), pp. 350–357
26.
go back to reference Z. Han, E. Forsberg, S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19(2), 91–93 (2007)CrossRef Z. Han, E. Forsberg, S. He, Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19(2), 91–93 (2007)CrossRef
27.
go back to reference J. Shibayama, R. Takahashi, J. Yamauchi, H. Nakano, Frequency-dependent locally one-dimensional FDTD implementation with a combined dispersion model for the analysis of surface plasmon waveguides. IEEE Photonics Technol. Lett. 20(10), 824–826 (2008)CrossRef J. Shibayama, R. Takahashi, J. Yamauchi, H. Nakano, Frequency-dependent locally one-dimensional FDTD implementation with a combined dispersion model for the analysis of surface plasmon waveguides. IEEE Photonics Technol. Lett. 20(10), 824–826 (2008)CrossRef
28.
go back to reference J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, H. Nakano, A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices. IEEE J. Quantum Electron. 46(1), 40–49 (2010)CrossRef J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, H. Nakano, A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices. IEEE J. Quantum Electron. 46(1), 40–49 (2010)CrossRef
Metadata
Title
Unconditionally Stable Fundamental Alternating Direction Implicit FDTD Method for Dispersive Media
Authors
Ding Yu Heh
Eng Leong Tan
Copyright Year
2015
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-095-7_4