Skip to main content
Top

2014 | OriginalPaper | Chapter

7. Underdetermined Audio Source Separation Using Laplacian Mixture Modelling

Author : Nikolaos Mitianoudis

Published in: Blind Source Separation

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problem of underdetermined audio source separation has been explored in the literature for many years. The instantaneous \(K\)-sensors, \(L\)-sources mixing scenario (where \(K<L\)) has been tackled by many different approaches, provided the sources remain quite distinct in the virtual positioning space spanned by the sensors. In this case, the source separation problem can be solved as a directional clustering problem along the source position angles in the mixture. The use of Laplacian Mixture Models in order to cluster and thus separate sparse sources in underdetermined mixtures will be explained in detail in this chapter. The novel Generalised Directional Laplacian Density will be derived in order to address the problem of modelling multidimensional angular data. The developed scheme demonstrates robust separation performance along with low processing time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
A \(\pi \)-periodicity is valid for the observed phenomenon, since data in \((\pi /2,3\pi /2)\) are symmetrical to the ones in \((-\pi /2,\pi /2)\) (See Fig. 7.1b). Hence, the use of the atan function instead of the extended atan2 function is justified. For the rest of the analysis, we will assume that \(\theta _n\) takes values between \((0,\pi )\) rather than \((-\pi /2,\pi /2)\). This implies that data in the 4th quadrant \((-\pi /2,0)\) are mapped with odd symmetry to the 2nd quadrant (\(\pi /2,\pi \)). This is performed in order to facilate the derivations of the Generalised Directional Laplacian Distribution and does not alter anything in the actual data.
 
2
Note that for \(n\) positive integer, we have that \(\varGamma (n)=(n-1)!\)
 
3
MATLAB code for the “GaussSep” algorithm is available from http://​www.​irisa.​fr/​metiss/​members/​evincent/​software.
 
4
MATLAB code for the “DEMIX” algorithm is available from http://​infoscience.​epfl.​ch/​record/​165878/​files/​.
 
Literature
1.
go back to reference Araki, S., Sawada, H., Mukai, R., Makino, S.: Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Process. 87, 1833–1847 (2007)CrossRefMATH Araki, S., Sawada, H., Mukai, R., Makino, S.: Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Process. 87, 1833–1847 (2007)CrossRefMATH
2.
go back to reference Arberet, S., Gribonval, R., Bimbot, F.: A robust method to count and locate audio sources in a multichannel underdetermined mixture. IEEE Trans. Signal Process. 58(1), 121–133 (2010)CrossRefMathSciNet Arberet, S., Gribonval, R., Bimbot, F.: A robust method to count and locate audio sources in a multichannel underdetermined mixture. IEEE Trans. Signal Process. 58(1), 121–133 (2010)CrossRefMathSciNet
3.
go back to reference Attias, H.: Independent factor analysis. Neural Comput. 11(4), 803–851 (1999)CrossRef Attias, H.: Independent factor analysis. Neural Comput. 11(4), 803–851 (1999)CrossRef
4.
go back to reference Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)MATHMathSciNet Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)MATHMathSciNet
5.
go back to reference Bentley, J.: Modelling circular data using a mixture of von Mises and uniform distributions. Simon Fraser University, MSc thesis (2006) Bentley, J.: Modelling circular data using a mixture of von Mises and uniform distributions. Simon Fraser University, MSc thesis (2006)
6.
go back to reference Bilmes, J.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden mixture models. Technical Report, Department of Electrical Engineering and Computer Science, U.C. Berkeley, California (1998) Bilmes, J.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden mixture models. Technical Report, Department of Electrical Engineering and Computer Science, U.C. Berkeley, California (1998)
7.
go back to reference Blumensath, T., Davies, M.: Sparse and shift-invariant representations of music. IEEE Trans. Audio Speech Lang. Process. 14(1), 50–57 (2006)CrossRef Blumensath, T., Davies, M.: Sparse and shift-invariant representations of music. IEEE Trans. Audio Speech Lang. Process. 14(1), 50–57 (2006)CrossRef
8.
go back to reference Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)CrossRefMATH Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)CrossRefMATH
9.
go back to reference Cardoso, J.F.: Blind signal separation: statistical principles. Proc. IEEE 9(10), 2009–2025 (1998)CrossRef Cardoso, J.F.: Blind signal separation: statistical principles. Proc. IEEE 9(10), 2009–2025 (1998)CrossRef
10.
go back to reference Cemgil, A., Févotte, C., Godsill, S.: Variational and stochastic inference for bayesian source separation. Digit. Signal Process. 17, 891913 (2007)CrossRef Cemgil, A., Févotte, C., Godsill, S.: Variational and stochastic inference for bayesian source separation. Digit. Signal Process. 17, 891913 (2007)CrossRef
11.
go back to reference Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley, New York (2002) Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley, New York (2002)
12.
go back to reference Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications, 856 p. Academic Press, Waltham (2010) Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications, 856 p. Academic Press, Waltham (2010)
13.
go back to reference Daudet, L., Sandler, M.: MDCT analysis of sinusoids: explicit results and applications to coding artifacts reduction. IEEE Trans. Speech Audio Process. 12(3), 302–312 (2004) Daudet, L., Sandler, M.: MDCT analysis of sinusoids: explicit results and applications to coding artifacts reduction. IEEE Trans. Speech Audio Process. 12(3), 302–312 (2004)
14.
go back to reference Davies, M., Mitianoudis, N.: A simple mixture model for sparse overcomplete ICA. IEE Proc. Vis. Image Signal Process. 151(1), 35–43 (2004)CrossRef Davies, M., Mitianoudis, N.: A simple mixture model for sparse overcomplete ICA. IEE Proc. Vis. Image Signal Process. 151(1), 35–43 (2004)CrossRef
15.
go back to reference Davies, M., Daudet, L.: Sparse audio representations using the mclt. Signal Process. 86(3), 358–368 (2006)CrossRef Davies, M., Daudet, L.: Sparse audio representations using the mclt. Signal Process. 86(3), 358–368 (2006)CrossRef
16.
go back to reference Dempster, A.P., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977) Dempster, A.P., Laird, N., Rubin, D.: Maximum likelihood for incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)
18.
go back to reference Dhillon, I., Sra, S.: Modeling data using directional distributions. Technical Report TR-03-06, University of Texas at Austin, Austin, TX (2003) Dhillon, I., Sra, S.: Modeling data using directional distributions. Technical Report TR-03-06, University of Texas at Austin, Austin, TX (2003)
19.
go back to reference Duarte, L., Suyama, R., Rivet, B., Attux, R., Romano, J., Jutten, C.: Blind compensation of nonlinear distortions: application to source separation of post-nonlinear mixtures. IEEE Trans. Signal Process. 60(11), 5832–5844 (2012)CrossRefMathSciNet Duarte, L., Suyama, R., Rivet, B., Attux, R., Romano, J., Jutten, C.: Blind compensation of nonlinear distortions: application to source separation of post-nonlinear mixtures. IEEE Trans. Signal Process. 60(11), 5832–5844 (2012)CrossRefMathSciNet
20.
go back to reference Duong, N., Vincent, E., Gribonval, R.: Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process. 18(7), 1830–1840 (2010) Duong, N., Vincent, E., Gribonval, R.: Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans. Audio Speech Lang. Process. 18(7), 1830–1840 (2010)
21.
go back to reference Eriksson, J., Koivunen, V.: Identifiability, separability, and uniqueness of linear ica models. IEEE Signal Process. Lett. 11(7), 601–604 (2004)CrossRef Eriksson, J., Koivunen, V.: Identifiability, separability, and uniqueness of linear ica models. IEEE Signal Process. Lett. 11(7), 601–604 (2004)CrossRef
22.
go back to reference Févotte, C., Godsill, S.: A bayesian approach to blind separation of sparse sources. IEEE Trans. Audio Speech Lang. Process. 14(6), 2174–2188 (2006) Févotte, C., Godsill, S.: A bayesian approach to blind separation of sparse sources. IEEE Trans. Audio Speech Lang. Process. 14(6), 2174–2188 (2006)
24.
go back to reference Fisher, N.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1993) Fisher, N.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1993)
25.
go back to reference Girolami, M.: A variational method for learning sparse and overcomplete representations. Neural Comput. 13(11), 2517–2532 (2001)CrossRefMATH Girolami, M.: A variational method for learning sparse and overcomplete representations. Neural Comput. 13(11), 2517–2532 (2001)CrossRefMATH
26.
28.
go back to reference Hyvärinen, A.: Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood. Neurocomputing 22, 49–67 (1998)CrossRefMATH Hyvärinen, A.: Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood. Neurocomputing 22, 49–67 (1998)CrossRefMATH
29.
go back to reference Jammalamadaka, S., Sengupta, A.: Topics in Circular Statistics. World Scientific, Singapore (2001) Jammalamadaka, S., Sengupta, A.: Topics in Circular Statistics. World Scientific, Singapore (2001)
30.
go back to reference Jutten, C., Karhunen, J.: Advances in nonlinear blind source separation. In: Proceedings of 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), pp. 245–256. Nara, Japan (2003) Jutten, C., Karhunen, J.: Advances in nonlinear blind source separation. In: Proceedings of 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), pp. 245–256. Nara, Japan (2003)
31.
go back to reference Kreyszig, E.: Advanced Engineering Mathematics, 1264 p. Wiley (2010) Kreyszig, E.: Advanced Engineering Mathematics, 1264 p. Wiley (2010)
32.
go back to reference Lee, T.W., Bell, A.J., Lambert, R.: Blind separation of delayed and convolved sources. In: Advances in Neural Information Processing Systems (NIPS), vol. 9, pp. 758–764 (1997) Lee, T.W., Bell, A.J., Lambert, R.: Blind separation of delayed and convolved sources. In: Advances in Neural Information Processing Systems (NIPS), vol. 9, pp. 758–764 (1997)
33.
go back to reference Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Process. Lett. 4(5), 87–90 (1999) Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Process. Lett. 4(5), 87–90 (1999)
34.
go back to reference Lewicki, M., Sejnowski, T.: Learning overcomplete representations. Neural Comput. 12, 337–365 (2000)CrossRef Lewicki, M., Sejnowski, T.: Learning overcomplete representations. Neural Comput. 12, 337–365 (2000)CrossRef
35.
go back to reference Lewicki, M.: Efficient coding of natural sounds. Nat. Neurosci. 5(4), 356–363 (2002)CrossRef Lewicki, M.: Efficient coding of natural sounds. Nat. Neurosci. 5(4), 356–363 (2002)CrossRef
36.
go back to reference MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. Berkeley, California (1967) MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. Berkeley, California (1967)
37.
go back to reference Mardia, K., Kanti, V., Jupp, P.: Directional Statistics. Wiley, Chichester (1999) Mardia, K., Kanti, V., Jupp, P.: Directional Statistics. Wiley, Chichester (1999)
38.
go back to reference Mitianoudis, N., Davies, M.: Permutation alignment for frequency domain ICA using subspace beamforming methods. In: Proceedings of the International Workshop on Independent Component Analysis and Source Separation (ICA2004), pp. 127–132. Granada, Spain (2004) Mitianoudis, N., Davies, M.: Permutation alignment for frequency domain ICA using subspace beamforming methods. In: Proceedings of the International Workshop on Independent Component Analysis and Source Separation (ICA2004), pp. 127–132. Granada, Spain (2004)
39.
go back to reference Mitianoudis, N., Stathaki, T.: Underdetermined source separation using mixtures of warped Laplacians. In: International Conference on Independent Component Analysis and Source Separation (ICA). London, UK (2007) Mitianoudis, N., Stathaki, T.: Underdetermined source separation using mixtures of warped Laplacians. In: International Conference on Independent Component Analysis and Source Separation (ICA). London, UK (2007)
40.
go back to reference Mitianoudis, N.: A directional Laplacian density for underdetermined audio source separation. In: 20th International Conference on Artificial Neural Networks (ICANN). Thessaloniki, Greece (2010) Mitianoudis, N.: A directional Laplacian density for underdetermined audio source separation. In: 20th International Conference on Artificial Neural Networks (ICANN). Thessaloniki, Greece (2010)
41.
go back to reference Mitianoudis, N., Davies, M.: Audio source separation of convolutive mixtures. IEEE Trans. Audio Speech Process. 11(5), 489–497 (2003)CrossRef Mitianoudis, N., Davies, M.: Audio source separation of convolutive mixtures. IEEE Trans. Audio Speech Process. 11(5), 489–497 (2003)CrossRef
42.
go back to reference Mitianoudis, N., Stathaki, T.: Batch and online underdetermined source separation using Laplacian mixture models. IEEE Trans. Audio Speech Lang. Process. 15(6), 1818–1832 (2007)CrossRef Mitianoudis, N., Stathaki, T.: Batch and online underdetermined source separation using Laplacian mixture models. IEEE Trans. Audio Speech Lang. Process. 15(6), 1818–1832 (2007)CrossRef
43.
go back to reference Moulines, E., Cardoso, J.F., Gassiat, E.: Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’97), pp. 3617–3620. Munich, Germany (1997) Moulines, E., Cardoso, J.F., Gassiat, E.: Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’97), pp. 3617–3620. Munich, Germany (1997)
44.
go back to reference O’Grady, P., Pearlmutter, B.: Hard-LOST: modified K-means for oriented lines. In: Proceedings of the Irish Signals and Systems Conference, pp. 247–252. Ireland (2004) O’Grady, P., Pearlmutter, B.: Hard-LOST: modified K-means for oriented lines. In: Proceedings of the Irish Signals and Systems Conference, pp. 247–252. Ireland (2004)
45.
go back to reference O’Grady, P., Pearlmutter, B.: Soft-LOST: EM on a mixture of oriented lines. In: Proceedings of the International Conference on Independent Component Analysis 2004, pp. 428–435. Granada, Spain (2004) O’Grady, P., Pearlmutter, B.: Soft-LOST: EM on a mixture of oriented lines. In: Proceedings of the International Conference on Independent Component Analysis 2004, pp. 428–435. Granada, Spain (2004)
46.
go back to reference Pajunen, P., Hyvärinen, A., Karhunen, J.: Nonlinear blind source separation by self-organizing maps. In: Proceedings of the International Conference on Neural Information Processing, pp. 1207–1210. Hong Kong (1996) Pajunen, P., Hyvärinen, A., Karhunen, J.: Nonlinear blind source separation by self-organizing maps. In: Proceedings of the International Conference on Neural Information Processing, pp. 1207–1210. Hong Kong (1996)
47.
go back to reference Plumbley, M., Abdallah, S., Blumensath, T., Davies, M.: Sparse representations of polyphonic music. Signal Process. 86(3), 417–431 (2006)CrossRefMATH Plumbley, M., Abdallah, S., Blumensath, T., Davies, M.: Sparse representations of polyphonic music. Signal Process. 86(3), 417–431 (2006)CrossRefMATH
48.
go back to reference Rickard, S., Balan, R., Rosca, J.: Real-time time-frequency based blind source separation. In: Proceedings of the ICA2001, pp. 651–656. San Diego, CA (2001) Rickard, S., Balan, R., Rosca, J.: Real-time time-frequency based blind source separation. In: Proceedings of the ICA2001, pp. 651–656. San Diego, CA (2001)
49.
go back to reference Sawada, H., Araki, S., Makino, S.: A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2007), pp. 139–142 (2007) Sawada, H., Araki, S., Makino, S.: A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2007), pp. 139–142 (2007)
50.
go back to reference Sawada, H., Araki, S., Makino, S.: Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans. Audio Speech Lang. Process. 19(3), 516–527 (2011) Sawada, H., Araki, S., Makino, S.: Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans. Audio Speech Lang. Process. 19(3), 516–527 (2011)
51.
go back to reference Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech Audio Process. 12(5), 75–87 (2004)CrossRef Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech Audio Process. 12(5), 75–87 (2004)CrossRef
55.
go back to reference Smaragdis, P., Boufounos, P.: Position and trajectory learning for microphone arrays. IEEE Trans. Audio Speech Lang. Process. 15(1), 358–368 (2007) Smaragdis, P., Boufounos, P.: Position and trajectory learning for microphone arrays. IEEE Trans. Audio Speech Lang. Process. 15(1), 358–368 (2007)
56.
go back to reference Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22, 21–34 (1998)CrossRefMATH Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22, 21–34 (1998)CrossRefMATH
57.
go back to reference Torkkola, K.: Blind separation of delayed and convolved sources. In: S. Haykin (ed.) Unsupervised Adaptive Filtering, vol. I, pp. 321–375. Wiley (2000) Torkkola, K.: Blind separation of delayed and convolved sources. In: S. Haykin (ed.) Unsupervised Adaptive Filtering, vol. I, pp. 321–375. Wiley (2000)
58.
go back to reference Vincent, E., Arberet, S., Gribonval, R.: Underdetermined instantaneous audio source separation via local gaussian modeling. In: 8th International Conferences on Independent Component Analysis and Signal Separation (ICA), pp. 775–782. Paraty, Brazil (2009) Vincent, E., Arberet, S., Gribonval, R.: Underdetermined instantaneous audio source separation via local gaussian modeling. In: 8th International Conferences on Independent Component Analysis and Signal Separation (ICA), pp. 775–782. Paraty, Brazil (2009)
60.
go back to reference Winter, S., Kellermann, W., Sawada, H., Makino, S.: MAP based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and L1-norm minimization. EURASIP J. Adv. Signal Process. 1, 12 p (2007) Winter, S., Kellermann, W., Sawada, H., Makino, S.: MAP based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and L1-norm minimization. EURASIP J. Adv. Signal Process. 1, 12 p (2007)
61.
go back to reference Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)CrossRefMathSciNet Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)CrossRefMathSciNet
62.
go back to reference Zibulevsky, M., Kisilev, P., Zeevi, Y., Pearlmutter, B.: Blind source separation via multinode sparse representation. Adv. Neural Inf. Process. Syst. 14, 1049–1056 (2002) Zibulevsky, M., Kisilev, P., Zeevi, Y., Pearlmutter, B.: Blind source separation via multinode sparse representation. Adv. Neural Inf. Process. Syst. 14, 1049–1056 (2002)
Metadata
Title
Underdetermined Audio Source Separation Using Laplacian Mixture Modelling
Author
Nikolaos Mitianoudis
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-55016-4_7