Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Underwater Acoustic Signal and Noise Modeling

Author : Douglas A. Abraham

Published in: Underwater Acoustic Signal Processing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the four dimensions in which underwater acoustic signals can be categorized are introduced: time, frequency, consistency from observation to observation, and knowledge of structure. Recalling the remote-sensing application, the impact of propagation through an underwater acoustic channel on source-signal characterization is described in terms of its effect on signal amplitude and phase. Various representations of bandpass signals are presented, including the analytic signal, complex envelope, envelope and instantaneous intensity. Statistical models for sampled time-series data are obtained for signals and noise to support derivation and analysis of detection and estimation algorithms. Reverberation in active systems is characterized as a random process in order to describe its autocorrelation function and power spectral density. The effect on reverberation arising from the motion of the sonar platform or reverberation-source scatterers, known as Doppler spreading, is introduced and approximated. In addition to the standard Gaussian noise model, a number of heavy-tailed distributions are described including the K distribution, Poisson-Rayleigh, and mixture distributions. Standard statistical models for signals and signals-plus-noise are presented along with techniques for evaluating or approximating the probability of detection and probability of false alarm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
As noted in Sect. 7.4.1, ambient noise can be assumed stationary over short periods of time. However, as described in Sect. 7.4.2, a normalization process needs to occur in order to treat reverberation as a WSS random process.
 
2
The bandwidth of the complex envelope accounts for both the positive and negative frequencies.
 
3
As described in [14, Ch. 5] there exist broadband waveforms with significant Doppler sensitivity that are not subject to (7.7).
 
4
As shown in Sect. 4.​4 or [24, Ch. 12], the Hilbert transform of s(t) is \(s_h(t)= \pi ^{-1}\int _{-\infty }^{\infty } s(\tau )/(\tau -t) \,\mathrm {d} \tau \). Note, however, that some texts define the Hilbert transform as the negative of that used here (i.e., with t − τ in the denominator of the definition rather than τ − t).
 
5
Recall from Sect. 5.​5 that the ACF for complex WSS random processes is https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-92983-5_7/334738_1_En_7_IEq45_HTML.gif .
 
6
Recall from Sect. 5.​5 that \(R_{\tilde {z}\tilde {z}}(\tau ) = 2R_{uu}(\tau )+j2R_{vv}(\tau )\) and R uv(τ) = −R uv(−τ) for a WSS proper complex random process.
 
7
Ergodicity in a WSS bandpass process with no zero-frequency content implies the ensemble mean is zero and that the temporally averaged power equals the variance.
 
8
Recall from the discussion in Sect. 5.​3.​6 that matrix–vector notation representing a vector as a lower-case bold letter (e.g., x) takes precedence over the mathematical-statistics notation of random variables taking an upper case letter and its observed value the lower case. Whether x = [X 1X n]T or x = [x 1x n]T must be discerned from context.
 
9
A trivial example of this can be found by letting θ ∼Unif(0, 4π).
 
10
Acknowledgement: CTBTO [29] with gratitude to Drs. G. Haralabus, M. Zampolli, P. Nielsen, and A. Brouwer for their assistance in identifying, accessing, and interpreting the data.
 
11
A distribution family is closed under a mathematical operation if the result of the operation is still within the family. For example, the Gaussian distribution is closed under translation, scale, and the addition of other Gaussian random variables.
 
12
Note that the approximations in Table 7.6 for the K distribution are accurate enough for use as a CRLB, but not accurate enough to obtain the off-diagonal term of the Fisher information matrix without adding terms in the 1∕α polynomial.
 
13
Note that this differs from that presented in [85] by not assuming the data have been normalized and by a factor of 2 so the average intensity is P o + λ rather than 2(P o + λ).
 
14
This technique has its origins in [96] and was applied in [97] to obtain the envelope PDF.
 
15
The computational routine from [98] has been implemented as a MATLAB® subroutine in [99]. Note that the definition of the Hankel transform in [99] differs from that used here, which is from [24, pg. 248], by absorbing the “x” in the integrand of (7.234) into the function g(x).
 
16
Note that the parameter variables used here differ from those in [53] to align with the (α, β) gamma-distribution convention: a g is the shape, b g the scale, and c g the location or shift parameter.
 
Literature
1.
go back to reference J.G. Proakis, Digital Communications (McGraw-Hill, New York 1983)MATH J.G. Proakis, Digital Communications (McGraw-Hill, New York 1983)MATH
2.
go back to reference T.S. Rappaport, Wireless Communications (Prentice Hall, Englewood, 1996) T.S. Rappaport, Wireless Communications (Prentice Hall, Englewood, 1996)
3.
go back to reference M. Stojanovic, Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 21(2), 125–136 (1996)CrossRef M. Stojanovic, Recent advances in high-speed underwater acoustic communications. IEEE J. Ocean. Eng. 21(2), 125–136 (1996)CrossRef
4.
go back to reference D. Brady, J.C. Preisig, Underwater acoustic communications, in Wireless Communications: Signal Processing Perspectives, ed. by H.V. Poor, G.W. Wornell, Chap. 8 (Prentice Hall PTR, Englewood, 1998) D. Brady, J.C. Preisig, Underwater acoustic communications, in Wireless Communications: Signal Processing Perspectives, ed. by H.V. Poor, G.W. Wornell, Chap. 8 (Prentice Hall PTR, Englewood, 1998)
5.
go back to reference R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983) R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)
6.
go back to reference The physics of sound in the sea. Sum. Tech. Rep.8~, Office of Scientific Research and Development, Nat. Def. Res. Comm. Div. 6, 1946 The physics of sound in the sea. Sum. Tech. Rep.8~, Office of Scientific Research and Development, Nat. Def. Res. Comm. Div. 6, 1946
7.
go back to reference W.S. Burdic, Underwater Acoustic System Analysis, 2nd edn. (Peninsula Publishing, Los Altos, 1991) W.S. Burdic, Underwater Acoustic System Analysis, 2nd edn. (Peninsula Publishing, Los Altos, 1991)
8.
go back to reference D. Ross, Mechanics of Underwater Noise (Peninsula Publishing, Los Altos, 1987) D. Ross, Mechanics of Underwater Noise (Peninsula Publishing, Los Altos, 1987)
9.
go back to reference W.W.L. Au, M.C. Hastings, Principles of Marine Bioacoustics (Springer, Berlin, 2008)CrossRef W.W.L. Au, M.C. Hastings, Principles of Marine Bioacoustics (Springer, Berlin, 2008)CrossRef
10.
go back to reference L. Cohen, Time-Frequency Analysis (Prentice Hall PTR, Englewood Cliffs, 1995) L. Cohen, Time-Frequency Analysis (Prentice Hall PTR, Englewood Cliffs, 1995)
11.
go back to reference G. Okopal, P.J. Loughlin, L. Cohen, Dispersion-invariant features for classification. J. Acoust. Soc. Am. 123(2), 832–841 (2008)CrossRef G. Okopal, P.J. Loughlin, L. Cohen, Dispersion-invariant features for classification. J. Acoust. Soc. Am. 123(2), 832–841 (2008)CrossRef
12.
go back to reference C. Eckart, Optimal rectifier systems for the detection of steady signals. Tech. Rpt. 52-11, University of California, Marine Physical Laboratory of the Scripps Institute of Oceanography, La Jolla, California, March 1952 C. Eckart, Optimal rectifier systems for the detection of steady signals. Tech. Rpt. 52-11, University of California, Marine Physical Laboratory of the Scripps Institute of Oceanography, La Jolla, California, March 1952
13.
go back to reference C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, Berlin, 2007)CrossRef C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, Berlin, 2007)CrossRef
14.
go back to reference D.W. Ricker, Echo Signal Processing (Kluwer Academic Publishers, Boston, 2003)CrossRef D.W. Ricker, Echo Signal Processing (Kluwer Academic Publishers, Boston, 2003)CrossRef
15.
go back to reference I. Dyer, Statistics of sound propagation in the ocean. J. Acoust. Soc. Am. 48(1B), 337–345 (1970)CrossRef I. Dyer, Statistics of sound propagation in the ocean. J. Acoust. Soc. Am. 48(1B), 337–345 (1970)CrossRef
16.
go back to reference P.N. Mikhalevsky, Envelope statistics of partially saturated processes. J. Acoust. Soc. Am. 72(1), 151–158 (1982)MATHCrossRef P.N. Mikhalevsky, Envelope statistics of partially saturated processes. J. Acoust. Soc. Am. 72(1), 151–158 (1982)MATHCrossRef
17.
go back to reference A.D. Seifer, M.J. Jacobson, Ray transmissions in an underwater acoustic duct with a pseudorandom bottom. J. Acoust. Soc. Am. 43(6), 1395–1403 (1968)CrossRef A.D. Seifer, M.J. Jacobson, Ray transmissions in an underwater acoustic duct with a pseudorandom bottom. J. Acoust. Soc. Am. 43(6), 1395–1403 (1968)CrossRef
18.
go back to reference S.O. Rice, Mathematical analysis of random noise: part III. Bell Syst. Tech. J. 24(1), 46–156 (1945)MATHCrossRef S.O. Rice, Mathematical analysis of random noise: part III. Bell Syst. Tech. J. 24(1), 46–156 (1945)MATHCrossRef
19.
go back to reference R.J. Urick, Models for the amplitude fluctuations of narrow-band signals and noise in the sea. J. Acoust. Soc. Am. 62(4), 878–887 (1977)CrossRef R.J. Urick, Models for the amplitude fluctuations of narrow-band signals and noise in the sea. J. Acoust. Soc. Am. 62(4), 878–887 (1977)CrossRef
20.
go back to reference C.H. Harrison, The influence of propagation focusing on clutter statistics. IEEE J. Ocean. Eng. 35(2), 175–184 (2010)CrossRef C.H. Harrison, The influence of propagation focusing on clutter statistics. IEEE J. Ocean. Eng. 35(2), 175–184 (2010)CrossRef
21.
go back to reference A.B. Carlson, Communication Systems (McGraw-Hill, New York, 1986) A.B. Carlson, Communication Systems (McGraw-Hill, New York, 1986)
22.
go back to reference J. Dugundji, Envelopes and pre-envelopes of real waveforms. IRE Trans. Inf. Theory 4(1), 53–57 (1958)CrossRef J. Dugundji, Envelopes and pre-envelopes of real waveforms. IRE Trans. Inf. Theory 4(1), 53–57 (1958)CrossRef
23.
go back to reference R.N. McDonough, A.D. Whalen, Detection of Signals in Noise, 2nd edn. (Academic Press, San Diego, 1995) R.N. McDonough, A.D. Whalen, Detection of Signals in Noise, 2nd edn. (Academic Press, San Diego, 1995)
24.
go back to reference R.N. Bracewell, The Fourier Transform and Its Applications, 2nd edn. (McGraw-Hill, New York, 1986)MATH R.N. Bracewell, The Fourier Transform and Its Applications, 2nd edn. (McGraw-Hill, New York, 1986)MATH
25.
go back to reference R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, Englewood Cliffs, 2011) R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, Englewood Cliffs, 2011)
26.
go back to reference W.W. Peterson, T.G. Birdsall, W.C. Fox, The theory of signal detectability. Trans. IRE Prof. Group Inf. Theory 4(4), 171–212 (1954)CrossRef W.W. Peterson, T.G. Birdsall, W.C. Fox, The theory of signal detectability. Trans. IRE Prof. Group Inf. Theory 4(4), 171–212 (1954)CrossRef
27.
go back to reference S.M. Haver, H. Klinck, S.L. Nieukirk, H. Matsumoto, R.P. Dziak, J.L. Miksis-Olds, The not-so-silent world: measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Res. I 122, 95–104 (2017)CrossRef S.M. Haver, H. Klinck, S.L. Nieukirk, H. Matsumoto, R.P. Dziak, J.L. Miksis-Olds, The not-so-silent world: measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Res. I 122, 95–104 (2017)CrossRef
28.
go back to reference G.M. Wenz, Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34(12), 1936–1956 (1962)CrossRef G.M. Wenz, Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34(12), 1936–1956 (1962)CrossRef
29.
go back to reference Acknowledgement: The author thanks and acknowledges the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO; https://www.ctbto.org/specials/vdec/) for providing access to the data used to produce these figures. The CTBTO is not responsible for the views of the author. Acknowledgement: The author thanks and acknowledges the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO; https://​www.​ctbto.​org/​specials/​vdec/​) for providing access to the data used to produce these figures. The CTBTO is not responsible for the views of the author.
30.
go back to reference T. Arase, E.M. Arase, Deep-sea ambient-noise statistics. J. Acoust. Soc. Am. 44(6), 1679–1684 (1968)CrossRef T. Arase, E.M. Arase, Deep-sea ambient-noise statistics. J. Acoust. Soc. Am. 44(6), 1679–1684 (1968)CrossRef
31.
go back to reference W.J. Jobst, S.L. Adams, Statistical analysis of ambient noise. J. Acoust. Soc. Am. 62(1), 63–71 (1977)CrossRef W.J. Jobst, S.L. Adams, Statistical analysis of ambient noise. J. Acoust. Soc. Am. 62(1), 63–71 (1977)CrossRef
32.
go back to reference A.R. Milne, J.H. Ganton, Ambient noise under arctic-sea ice. J. Acoust. Soc. Am. 36(5), 855–863 (1964)CrossRef A.R. Milne, J.H. Ganton, Ambient noise under arctic-sea ice. J. Acoust. Soc. Am. 36(5), 855–863 (1964)CrossRef
33.
go back to reference I. Dyer, Statistics of distant shipping noise. J. Acoust. Soc. Am. 53(2), 564–570 (1973)CrossRef I. Dyer, Statistics of distant shipping noise. J. Acoust. Soc. Am. 53(2), 564–570 (1973)CrossRef
34.
go back to reference J.G. Veitch, A.R. Wilks, A characterization of Arctic undersea noise. J. Acoust. Soc. Am. 77(3), 989–999 (1985)CrossRef J.G. Veitch, A.R. Wilks, A characterization of Arctic undersea noise. J. Acoust. Soc. Am. 77(3), 989–999 (1985)CrossRef
35.
go back to reference M. Bouvet, S.C. Schwartz, Underwater noises: statistical modeling, detection, and normalization. J. Acoust. Soc. Am. 83(3), 1023–1033 (1988)CrossRef M. Bouvet, S.C. Schwartz, Underwater noises: statistical modeling, detection, and normalization. J. Acoust. Soc. Am. 83(3), 1023–1033 (1988)CrossRef
36.
go back to reference A.B. Baggeroer, E.K. Scheer, The NPAL Group, Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site. J. Acoust. Soc. Am. 117(3), 1643–1665 (2005) A.B. Baggeroer, E.K. Scheer, The NPAL Group, Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site. J. Acoust. Soc. Am. 117(3), 1643–1665 (2005)
37.
go back to reference D. Middleton, Statistical-physical models of electromagnetic interference. IEEE Trans. Electromagn. Compat. EMC-19(3), 106–127 (1977)CrossRef D. Middleton, Statistical-physical models of electromagnetic interference. IEEE Trans. Electromagn. Compat. EMC-19(3), 106–127 (1977)CrossRef
38.
go back to reference G.R. Wilson, D.R. Powell, Experimental and modeled density estimates of underwater acoustic returns, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 223–219 G.R. Wilson, D.R. Powell, Experimental and modeled density estimates of underwater acoustic returns, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 223–219
39.
go back to reference S.A. Kassam, Signal Detection in Non-Gaussian Noise (Springer, New York, 1988)CrossRef S.A. Kassam, Signal Detection in Non-Gaussian Noise (Springer, New York, 1988)CrossRef
40.
go back to reference F.W. Machell, C.S. Penrod, Probability density functions of ocean acoustic noise processes, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 211–221 F.W. Machell, C.S. Penrod, Probability density functions of ocean acoustic noise processes, in Statistical Signal Processing, ed. by E.J. Wegman, J.G. Smith (Marcel Dekker, New York, 1984), pp. 211–221
41.
go back to reference N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 1, 2nd edn. (Wiley, Hoboken, 1994) N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 1, 2nd edn. (Wiley, Hoboken, 1994)
43.
go back to reference V.V. Ol’shevskii, Characteristics of Sea Reverberation (Consultants Bureau, New York, 1967) V.V. Ol’shevskii, Characteristics of Sea Reverberation (Consultants Bureau, New York, 1967)
44.
go back to reference M.A. Richards, J.A. Scheer, W.A. Holm, Principles of Modern Radar (SciTech Publishing, Raleigh, 2010)CrossRef M.A. Richards, J.A. Scheer, W.A. Holm, Principles of Modern Radar (SciTech Publishing, Raleigh, 2010)CrossRef
45.
46.
go back to reference C.W. Holland, J.R. Preston, D.A. Abraham, Long-range acoustic scattering from a shallow-water mud-volcano cluster. J. Acoust. Soc. Am. 122(4), 1946–1958 (2007)CrossRef C.W. Holland, J.R. Preston, D.A. Abraham, Long-range acoustic scattering from a shallow-water mud-volcano cluster. J. Acoust. Soc. Am. 122(4), 1946–1958 (2007)CrossRef
47.
go back to reference D.A. Abraham, A.P. Lyons, Novel physical interpretations of K-distributed reverberation. IEEE J. Ocean. Eng. 27(4), 800–813 (2002)CrossRef D.A. Abraham, A.P. Lyons, Novel physical interpretations of K-distributed reverberation. IEEE J. Ocean. Eng. 27(4), 800–813 (2002)CrossRef
48.
go back to reference E. Jakeman, P.N. Pusey, A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 24(6), 806–814 (1976)CrossRef E. Jakeman, P.N. Pusey, A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propag. 24(6), 806–814 (1976)CrossRef
49.
go back to reference E. Jakeman, On the statistics of k-distributed noise. J. Phys. A Math. Gen. 13, 31–48 (1980)MATHCrossRef E. Jakeman, On the statistics of k-distributed noise. J. Phys. A Math. Gen. 13, 31–48 (1980)MATHCrossRef
50.
go back to reference K.D. Ward, Compound representation of high resolution sea clutter. Electron. Lett. 17(16), 561–563 (1981)CrossRef K.D. Ward, Compound representation of high resolution sea clutter. Electron. Lett. 17(16), 561–563 (1981)CrossRef
51.
go back to reference E. Jakeman, K.D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor & Francis, Boca Raton, 2006)CrossRef E. Jakeman, K.D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor & Francis, Boca Raton, 2006)CrossRef
52.
go back to reference K.D. Ward, R.J.A. Tough, S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance (The Institution of Engineering and Technology, London, 2006)CrossRef K.D. Ward, R.J.A. Tough, S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance (The Institution of Engineering and Technology, London, 2006)CrossRef
53.
go back to reference D.A. Abraham, Signal excess in K-distributed reverberation. IEEE J. Ocean. Eng. 28(3), 526–536 (2003)CrossRef D.A. Abraham, Signal excess in K-distributed reverberation. IEEE J. Ocean. Eng. 28(3), 526–536 (2003)CrossRef
54.
go back to reference D.A. Abraham, Detection-threshold approximation for non-Gaussian backgrounds. IEEE J. Ocean. Eng. 35(2), 355–365 (2010)CrossRef D.A. Abraham, Detection-threshold approximation for non-Gaussian backgrounds. IEEE J. Ocean. Eng. 35(2), 355–365 (2010)CrossRef
55.
go back to reference K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer Science, New York, 2009)MATHCrossRef K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer Science, New York, 2009)MATHCrossRef
56.
go back to reference I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, ed. by D. Zwillinger, 8th edn. (Elsevier Academic Press, Waltham, 2015) I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, ed. by D. Zwillinger, 8th edn. (Elsevier Academic Press, Waltham, 2015)
57.
go back to reference I.R. Joughin, D.B. Percival, D.P. Winebrenner, Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. Geosci. Remote Sens. 31(5), 989–999 (1993)CrossRef I.R. Joughin, D.B. Percival, D.P. Winebrenner, Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. Geosci. Remote Sens. 31(5), 989–999 (1993)CrossRef
58.
go back to reference W.J.J. Roberts, S. Furui, Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm. IEEE Trans. Signal Process. 48(12), 3303–3306 (2000)MathSciNetMATHCrossRef W.J.J. Roberts, S. Furui, Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm. IEEE Trans. Signal Process. 48(12), 3303–3306 (2000)MathSciNetMATHCrossRef
59.
go back to reference D.A. Abraham, A.P. Lyons, Reliable methods for estimating the K-distribution shape parameter. IEEE J. Ocean. Eng. 35(2), 288–302 (2010)CrossRef D.A. Abraham, A.P. Lyons, Reliable methods for estimating the K-distribution shape parameter. IEEE J. Ocean. Eng. 35(2), 288–302 (2010)CrossRef
60.
go back to reference J.M. Fialkowski, R.C. Gauss, D.M. Drumheller, Measurements and modeling of low-frequency near-surface scattering statistics. IEEE J. Ocean. Eng. 29(2), 197–214 (2004)CrossRef J.M. Fialkowski, R.C. Gauss, D.M. Drumheller, Measurements and modeling of low-frequency near-surface scattering statistics. IEEE J. Ocean. Eng. 29(2), 197–214 (2004)CrossRef
61.
go back to reference J.M. Fialkowski, R.C. Gauss, Methods for identifying and controlling sonar clutter. IEEE J. Ocean. Eng. 35(2), 330–354 (2010)CrossRef J.M. Fialkowski, R.C. Gauss, Methods for identifying and controlling sonar clutter. IEEE J. Ocean. Eng. 35(2), 330–354 (2010)CrossRef
62.
go back to reference S.M. Zabin, H.V. Poor, Parameter estimation for Middleton Class A interference processes. IEEE Trans. Commun. 37(10), 1042–1051 (1989)CrossRef S.M. Zabin, H.V. Poor, Parameter estimation for Middleton Class A interference processes. IEEE Trans. Commun. 37(10), 1042–1051 (1989)CrossRef
63.
go back to reference S.M. Zabin, H.V. Poor, Recursive algorithms for identification of impulse noise channels. IEEE Trans. Inf. Theory 36(3), 559–578 (1990)MATHCrossRef S.M. Zabin, H.V. Poor, Recursive algorithms for identification of impulse noise channels. IEEE Trans. Inf. Theory 36(3), 559–578 (1990)MATHCrossRef
64.
go back to reference S.M. Zabin, H.V. Poor, Efficient estimation of Class A noise parameters via the EM algorithm. IEEE Trans. Inf. Theory 37(1), 60–72 (1991)MATHCrossRef S.M. Zabin, H.V. Poor, Efficient estimation of Class A noise parameters via the EM algorithm. IEEE Trans. Inf. Theory 37(1), 60–72 (1991)MATHCrossRef
65.
go back to reference S.T. McDaniel, Seafloor reverberation fluctuations. J. Acoust. Soc. Am. 88(3), 1530–1535 (1990)CrossRef S.T. McDaniel, Seafloor reverberation fluctuations. J. Acoust. Soc. Am. 88(3), 1530–1535 (1990)CrossRef
66.
go back to reference M. Gu, D.A. Abraham, Using McDaniel’s model to represent non-Rayleigh reverberation. IEEE J. Ocean. Eng. 26(3), 348–357 (2001)CrossRef M. Gu, D.A. Abraham, Using McDaniel’s model to represent non-Rayleigh reverberation. IEEE J. Ocean. Eng. 26(3), 348–357 (2001)CrossRef
67.
go back to reference M. Gu, D.A. Abraham, Parameter estimation for McDaniel’s non-Rayleigh reverberation model, in Proceedings of Oceans 99 Conference, Seattle, Washington (1999), pp. 279–283 M. Gu, D.A. Abraham, Parameter estimation for McDaniel’s non-Rayleigh reverberation model, in Proceedings of Oceans 99 Conference, Seattle, Washington (1999), pp. 279–283
68.
go back to reference E. Conte, M. Longo, Characterisation of radar clutter as a spherically invariant random process. IEE Proc. F Radar Signal Process. 134(2), 191–197 (1987)CrossRef E. Conte, M. Longo, Characterisation of radar clutter as a spherically invariant random process. IEE Proc. F Radar Signal Process. 134(2), 191–197 (1987)CrossRef
69.
go back to reference T.J. Barnard, D.D. Weiner, Non-Gaussian clutter modeling with generalized spherically invariant random vectors. IEEE Trans. Signal Process. 44(10), 2384–2390 (1996)CrossRef T.J. Barnard, D.D. Weiner, Non-Gaussian clutter modeling with generalized spherically invariant random vectors. IEEE Trans. Signal Process. 44(10), 2384–2390 (1996)CrossRef
70.
go back to reference T.J. Barnard, F. Khan, Statistical normalization of spherically invariant non-Gaussian clutter. IEEE J. Ocean. Eng. 29(2), 303–309 (2004)CrossRef T.J. Barnard, F. Khan, Statistical normalization of spherically invariant non-Gaussian clutter. IEEE J. Ocean. Eng. 29(2), 303–309 (2004)CrossRef
71.
go back to reference B.R. La Cour, Statistical characterization of active sonar reverberation using extreme value theory. IEEE J. Ocean. Eng. 29(2), 310–316 (2004)CrossRef B.R. La Cour, Statistical characterization of active sonar reverberation using extreme value theory. IEEE J. Ocean. Eng. 29(2), 310–316 (2004)CrossRef
72.
go back to reference J.M. Gelb, R.E. Heath, G.L. Tipple, Statistics of distinct clutter classes in mid-frequency active sonar. IEEE J. Ocean. Eng. 35(2), 220–229 (2010)CrossRef J.M. Gelb, R.E. Heath, G.L. Tipple, Statistics of distinct clutter classes in mid-frequency active sonar. IEEE J. Ocean. Eng. 35(2), 220–229 (2010)CrossRef
73.
go back to reference G.B. Goldstein, False-alarm regulation in log-normal and Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-9(1), 84–92 (1973)CrossRef G.B. Goldstein, False-alarm regulation in log-normal and Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-9(1), 84–92 (1973)CrossRef
74.
go back to reference D.C. Schleher, Radar detection in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-12(6), 736–743 (1976)CrossRef D.C. Schleher, Radar detection in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. AES-12(6), 736–743 (1976)CrossRef
75.
76.
go back to reference N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd edn. (Wiley, New York, 1995) N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 2, 2nd edn. (Wiley, New York, 1995)
77.
go back to reference N.P. Chotiros, H. Boehme, T.G. Goldsberry, S.P. Pitt, R.A. Lamb, A.L. Garcia, R.A. Altenburg, Acoustic backscattering at low grazing angles from the ocean bottom. Part II. Statistical characteristics of bottom backscatter at a shallow water site. J. Acoust. Soc. Am. 77(3), 975–982 (1985) N.P. Chotiros, H. Boehme, T.G. Goldsberry, S.P. Pitt, R.A. Lamb, A.L. Garcia, R.A. Altenburg, Acoustic backscattering at low grazing angles from the ocean bottom. Part II. Statistical characteristics of bottom backscatter at a shallow water site. J. Acoust. Soc. Am. 77(3), 975–982 (1985)
78.
go back to reference S. Kay, C. Xu, CRLB via the characteristic function with application to the K-distribution. IEEE Trans. Aerosp. Electron. Syst. 44(3), 1161–1168 (2008)CrossRef S. Kay, C. Xu, CRLB via the characteristic function with application to the K-distribution. IEEE Trans. Aerosp. Electron. Syst. 44(3), 1161–1168 (2008)CrossRef
79.
go back to reference P.A. Crowther, Fluctuation statistics of sea-bed acoustic backscatter, in Bottom Interacting Ocean Acoustics, ed. by W.A. Kuperman, F.B. Jensen (Plenum, New York, 1980), pp. 609–622CrossRef P.A. Crowther, Fluctuation statistics of sea-bed acoustic backscatter, in Bottom Interacting Ocean Acoustics, ed. by W.A. Kuperman, F.B. Jensen (Plenum, New York, 1980), pp. 609–622CrossRef
80.
go back to reference A.P. Lyons, D.A. Abraham, Statistical characterization of high-frequency shallow-water seafloor backscatter. J. Acoust. Soc. Am. 106(3), 1307–1315 (1999)CrossRef A.P. Lyons, D.A. Abraham, Statistical characterization of high-frequency shallow-water seafloor backscatter. J. Acoust. Soc. Am. 106(3), 1307–1315 (1999)CrossRef
81.
go back to reference W.J. Lee, T.K. Stanton, Statistics of echoes from mixed assemblages of scatterers with different scattering amplitudes and numerical densities. IEEE J. Ocean. Eng. 39(4), 740–754 (2014)CrossRef W.J. Lee, T.K. Stanton, Statistics of echoes from mixed assemblages of scatterers with different scattering amplitudes and numerical densities. IEEE J. Ocean. Eng. 39(4), 740–754 (2014)CrossRef
82.
go back to reference A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 2, 1–38 (1977)MathSciNetMATH A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 2, 1–38 (1977)MathSciNetMATH
83.
84.
go back to reference D.A. Abraham, J.M. Gelb, A.W. Oldag, Background and clutter mixture distributions for active sonar statistics. IEEE J. Ocean. Eng. 36(2), 231–247 (2011)CrossRef D.A. Abraham, J.M. Gelb, A.W. Oldag, Background and clutter mixture distributions for active sonar statistics. IEEE J. Ocean. Eng. 36(2), 231–247 (2011)CrossRef
85.
go back to reference D.A. Abraham, Application of gamma-fluctuating-intensity signal model to active sonar, in Proceedings of 2015 IEEE Oceans Conference, Genoa, Italy (2015) D.A. Abraham, Application of gamma-fluctuating-intensity signal model to active sonar, in Proceedings of 2015 IEEE Oceans Conference, Genoa, Italy (2015)
86.
go back to reference M.A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005) M.A. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005)
87.
go back to reference D.A. Shnidman, The calculation of the probability of detection and the generalized Marcum Q-function. IEEE Trans. Inf. Theory 35(2), 389–400 (1989)MATHCrossRef D.A. Shnidman, The calculation of the probability of detection and the generalized Marcum Q-function. IEEE Trans. Inf. Theory 35(2), 389–400 (1989)MATHCrossRef
88.
go back to reference C.W. Helstrom, Elements of Signal Detection and Estimation (Prentice Hall, Englewood Cliffs, 1995)MATH C.W. Helstrom, Elements of Signal Detection and Estimation (Prentice Hall, Englewood Cliffs, 1995)MATH
89.
go back to reference S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall PTR, Englewood Cliffs, 1998) S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall PTR, Englewood Cliffs, 1998)
90.
go back to reference A.H. Nuttall, Accurate efficient evaluation of cumulative or exceedance probability distributions directly from characteristic functions. Tech. Rpt. 7023, Naval Underwater Systems Center, New London, CT, October 1983 A.H. Nuttall, Accurate efficient evaluation of cumulative or exceedance probability distributions directly from characteristic functions. Tech. Rpt. 7023, Naval Underwater Systems Center, New London, CT, October 1983
92.
93.
go back to reference W.W. Weinstock, Target cross section models for radar systems analysis. Ph.D. dissertation, University of Pennsylvania, Philadelphia, PA, 1964 W.W. Weinstock, Target cross section models for radar systems analysis. Ph.D. dissertation, University of Pennsylvania, Philadelphia, PA, 1964
94.
go back to reference D.A. Shnidman, Expanded Swerling target models. IEEE Trans. Aerosp. Electron. Syst. 39(3), 1059–1069 (2003)CrossRef D.A. Shnidman, Expanded Swerling target models. IEEE Trans. Aerosp. Electron. Syst. 39(3), 1059–1069 (2003)CrossRef
95.
go back to reference P. Swerling, Radar probability of detection for some additional fluctuating target cases. IEEE Trans. Aerosp. Electron. Syst. 33(2), 698–709 (1997)CrossRef P. Swerling, Radar probability of detection for some additional fluctuating target cases. IEEE Trans. Aerosp. Electron. Syst. 33(2), 698–709 (1997)CrossRef
97.
go back to reference D.M. Drumheller, Padé approximations to matched filter amplitude probability functions. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1033–1045 (1999)CrossRef D.M. Drumheller, Padé approximations to matched filter amplitude probability functions. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1033–1045 (1999)CrossRef
98.
go back to reference W.L. Anderson, Computer program numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics 44(7), 1287–1305 (1979)CrossRef W.L. Anderson, Computer program numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics 44(7), 1287–1305 (1979)CrossRef
100.
go back to reference H. Amindavar, J.A. Ritcey, Padé approximations for detectability in K-clutter and noise. IEEE Trans. Aerosp. Electron. Syst. 30(2), 425–434 (1994)CrossRef H. Amindavar, J.A. Ritcey, Padé approximations for detectability in K-clutter and noise. IEEE Trans. Aerosp. Electron. Syst. 30(2), 425–434 (1994)CrossRef
Metadata
Title
Underwater Acoustic Signal and Noise Modeling
Author
Douglas A. Abraham
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92983-5_7